Functionalized, long-circulating, and ultrasmall gold nanocarriers for overcoming the barriers of low nanoparticle delivery efficiency and poor tumor penetration

Kate Y.J. Lee, Gee Young Lee, Lucas A. Lane, Bin Li, Jianquan Wang, Qian Lu, Yiqing Wang, Shuming Nie

Research output: Contribution to journalArticlepeer-review

Abstract

The development of sophisticated nanoplatforms for in vivo targeted delivery of therapeutic agents to solid tumors has the potential for not only improving therapeutic efficacy but also minimizing systemic toxicity. However, the currently low delivery efficiency (about 1% of the injected dose) and the limited tumor penetration of nanoparticles remain two major challenges. Here we report a class of functionalized, long-circulating, and ultrasmall gold nanocarriers (5 nm gold core and 20 nm overall hydrodynamic diameter) for improved drug delivery and deep tumor penetration. By using doxorubicin as a model drug, our design also includes a pH-sensitive hydrazone linkage that is stable at neutral or slightly basic pH but is rapidly cleaved in the acidic tumor microenvironments and intracellular organelles. With a circulation halftime of 1.6 days, the small particle size is an important feature not only for efficient extravasation and accumulation via the enhanced permeability and retention (EPR) effect, but also for faster nanoparticle diffusion and improved tumor penetration. In xenograft animal models, the results demonstrate that up to 8% of the injected nanoparticles can be accumulated at the tumor sites, among the highest nanoparticle delivery efficiencies reported in the literature. Also, histopathological and direct visual examinations reveal dark-colored tumors with deep nanoparticle penetration and distribution throughout the tumor mass. In comparison with pure doxorubicin which is known to cause considerable heart, kidney, and lung toxicity, in vivo animal data indicate that this class of functionalized and ultrasmall gold nanoparticles indeed provides better therapeutic efficacies with no apparent toxicity in vital organs.

Original languageEnglish (US)
Pages (from-to)244-252
Number of pages9
JournalBioconjugate Chemistry
Volume28
Issue number1
DOIs
StatePublished - Jan 18 2017
Externally publishedYes

ASJC Scopus subject areas

  • Biotechnology
  • Bioengineering
  • Biomedical Engineering
  • Pharmacology
  • Pharmaceutical Science
  • Organic Chemistry

Fingerprint Dive into the research topics of 'Functionalized, long-circulating, and ultrasmall gold nanocarriers for overcoming the barriers of low nanoparticle delivery efficiency and poor tumor penetration'. Together they form a unique fingerprint.

Cite this