TY - JOUR
T1 - Functional significance of a truncated thyroid receptor subtype lacking a hormone-binding domain in goldfish
AU - Nelson, Erik R.
AU - Habibi, Hamid R.
PY - 2008/9
Y1 - 2008/9
N2 - Thyroid hormones are important mediators of growth and development in vertebrates and act by binding to a specific family of thyroid receptors (TRs). The TRs belong to the nuclear receptor superfamily, with two conserved regions, a DNA binding domain and a ligand binding domain (LBD). We recently demonstrated the presence of four TR subtypes in goldfish, two with complete DNA binding domains and LBDs (TRα-1 and TRβ) and two novel forms including a transcript resembling TRα with variation in the LBD as well as a TRα-truncated (TRα-t) form lacking a LBD. To study the functional significance of TR subtypes, we first investigated the regulation of hepatic goldfish deiodinase type 3 (D3) by T3 and validated a bioassay in which D3 gene expression is up-regulated significantly in vivo and in vitro. Using short interfering RNA, TRα-1, TRβ, or TRα-t was specifically knocked down and thyroid hormone-induced D3 gene expression was measured. short interfering RNA against TRα-1 or TRβ reduced the T3 induction of deiodinase gene expression to 50% or less than 25% of control (T3 treated) cells, respectively. Knocking down TRα-t alone, however, increased D3 expression 500-fold supporting the hypothesis that TRα-t plays a modulatory role in thyroid hormone-induced gene expression. Our results provide important insight into thyroid receptor biology in goldfish and a framework for the better understanding of thyroid receptor function in all vertebrates.
AB - Thyroid hormones are important mediators of growth and development in vertebrates and act by binding to a specific family of thyroid receptors (TRs). The TRs belong to the nuclear receptor superfamily, with two conserved regions, a DNA binding domain and a ligand binding domain (LBD). We recently demonstrated the presence of four TR subtypes in goldfish, two with complete DNA binding domains and LBDs (TRα-1 and TRβ) and two novel forms including a transcript resembling TRα with variation in the LBD as well as a TRα-truncated (TRα-t) form lacking a LBD. To study the functional significance of TR subtypes, we first investigated the regulation of hepatic goldfish deiodinase type 3 (D3) by T3 and validated a bioassay in which D3 gene expression is up-regulated significantly in vivo and in vitro. Using short interfering RNA, TRα-1, TRβ, or TRα-t was specifically knocked down and thyroid hormone-induced D3 gene expression was measured. short interfering RNA against TRα-1 or TRβ reduced the T3 induction of deiodinase gene expression to 50% or less than 25% of control (T3 treated) cells, respectively. Knocking down TRα-t alone, however, increased D3 expression 500-fold supporting the hypothesis that TRα-t plays a modulatory role in thyroid hormone-induced gene expression. Our results provide important insight into thyroid receptor biology in goldfish and a framework for the better understanding of thyroid receptor function in all vertebrates.
UR - http://www.scopus.com/inward/record.url?scp=50449089994&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=50449089994&partnerID=8YFLogxK
U2 - 10.1210/en.2008-0107
DO - 10.1210/en.2008-0107
M3 - Article
C2 - 18511506
AN - SCOPUS:50449089994
SN - 0013-7227
VL - 149
SP - 4702
EP - 4709
JO - Endocrinology
JF - Endocrinology
IS - 9
ER -