Abstract
The cbb3-type cytochrome c oxidases are members of the family of heme-copper proton pumping respiratory oxygen reductases. The structure of the cbb3-type oxidase from Pseudomonas stutzeri reveals that, in addition to the six redox-active metal centers (two b-type hemes, three c-type hemes, and CuB), the enzyme also contains at least one Ca2+. The calcium bridges two propionate carboxyls at the interface between the low-spin heme b and the active-site heme b3 and, in addition, is ligated to a serine in subunit CcoO and by a glutamate in subunit CcoN. The glutamate that is ligated to Ca2+ is one of a pair of glutamic acid residues that has previously been suggested to be part of a proton exit pathway for pumped protons. In this work, mutations of these glutamates are investigated in the cbb3-type oxidases from Vibrio cholerae and Rhodobacter sphaeroides. Metal analysis shows that each of these wild-type enzymes contains Ca 2+. Mutations of the glutamate expected to ligate the Ca2+ in each of these enzymes (E126 in V. cholerae and E180 in R. sphaeroides) result in a loss of activity as well as a loss of Ca2+. Mutations of the nearby glutamate (E129 in V. cholerae and E183 in R. sphaeroides) also resulted in a loss of oxidase activity and a loss of Ca2+. It is concluded that the Ca2+ is essential for assembly of the fully functional enzyme and that neither of the glutamates is likely to be part of a pathway for pumped protons within the cbb3-type oxygen reductases. A more likely role for these glutamates is the maintenance of the structural integrity of the active conformation of the enzyme.
Original language | English (US) |
---|---|
Pages (from-to) | 7290-7296 |
Number of pages | 7 |
Journal | Biochemistry |
Volume | 51 |
Issue number | 37 |
DOIs | |
State | Published - Sep 18 2012 |
ASJC Scopus subject areas
- Biochemistry