TY - GEN
T1 - Full-scale decentralized damage identification using wireless smart sensors
AU - Jang, Shinae
AU - Sim, Sung Han
AU - Jo, Hongki
AU - Spencer, Billie F.
PY - 2011
Y1 - 2011
N2 - Wireless Smart Sensor Networks (WSSN) facilitates a new paradigm to structural health monitoring (SHM) for civil infrastructure. Conventionally, SHM systems employing wired sensors and central data acquisition have been used to characterize the state of a structure; however, wide-spread implementation has been limited due to difficulties in cabling and data management, high equipment cost, and long setup time. WSSNs offer a unique opportunity to overcome such difficulties. Recent advances in sensor technology have realized low-cost, smart sensors with on-board computation and wireless communication capabilities, making deployment of a dense array of sensors on large civil structures both feasible and economical. Wireless smart sensors have shown their tremendous potential for SHM in recent full-scale bridge monitoring examples. However, structural damage identification in WSSNs, a primary objective of SHM, has yet to reach its full potential. This paper presents a full-scale validation of the decentralized damage identification application on the Imote2 sensor platform on a historic steel truss bridge. The SHM application for WSSN developed in the previous research is further combined with continuous and autonomous monitoring application. In total, 144 sensor channels and one base station have been deployed on the bridge for damage localization. The efficacy of the developed application has been demonstrated to compare the damage identification results with the traditional centralized processing.
AB - Wireless Smart Sensor Networks (WSSN) facilitates a new paradigm to structural health monitoring (SHM) for civil infrastructure. Conventionally, SHM systems employing wired sensors and central data acquisition have been used to characterize the state of a structure; however, wide-spread implementation has been limited due to difficulties in cabling and data management, high equipment cost, and long setup time. WSSNs offer a unique opportunity to overcome such difficulties. Recent advances in sensor technology have realized low-cost, smart sensors with on-board computation and wireless communication capabilities, making deployment of a dense array of sensors on large civil structures both feasible and economical. Wireless smart sensors have shown their tremendous potential for SHM in recent full-scale bridge monitoring examples. However, structural damage identification in WSSNs, a primary objective of SHM, has yet to reach its full potential. This paper presents a full-scale validation of the decentralized damage identification application on the Imote2 sensor platform on a historic steel truss bridge. The SHM application for WSSN developed in the previous research is further combined with continuous and autonomous monitoring application. In total, 144 sensor channels and one base station have been deployed on the bridge for damage localization. The efficacy of the developed application has been demonstrated to compare the damage identification results with the traditional centralized processing.
KW - bridge monitoring
KW - damage locating vector
KW - decentralized damage identification
KW - structural health monitoring
KW - wireless smart sensor
UR - http://www.scopus.com/inward/record.url?scp=79956308839&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79956308839&partnerID=8YFLogxK
U2 - 10.1117/12.881160
DO - 10.1117/12.881160
M3 - Conference contribution
AN - SCOPUS:79956308839
SN - 9780819485434
T3 - Proceedings of SPIE - The International Society for Optical Engineering
BT - Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2011
T2 - Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2011
Y2 - 7 March 2011 through 10 March 2011
ER -