TY - JOUR
T1 - From Trainable Negative Depth to Edge Heterophily in Graphs
AU - Yan, Yuchen
AU - Chen, Yuzhong
AU - Chen, Huiyuan
AU - Xu, Minghua
AU - Das, Mahashweta
AU - Yang, Hao
AU - Tong, Hanghang
N1 - Publisher Copyright:
© 2023 Neural information processing systems foundation. All rights reserved.
PY - 2023
Y1 - 2023
N2 - Finding the proper depth d of a graph convolutional network (GCN) that provides strong representation ability has drawn significant attention, yet nonetheless largely remains an open problem for the graph learning community. Although noteworthy progress has been made, the depth or the number of layers of a corresponding GCN is realized by a series of graph convolution operations, which naturally makes d a positive integer (d ∈ N+). An interesting question is whether breaking the constraint of N+ by making d a real number (d ∈ R) can bring new insights into graph learning mechanisms. In this work, by redefining GCN's depth d as a trainable parameter continuously adjustable within (−∞, +∞), we open a new door of controlling its signal processing capability to model graph homophily/heterophily (nodes with similar/dissimilar labels/attributes tend to be inter-connected). A simple and powerful GCN model TEDGCN, is proposed to retain the simplicity of GCN and meanwhile automatically search for the optimal d without the prior knowledge regarding whether the input graph is homophilic or heterophilic. Negative-valued d intrinsically enables high-pass frequency filtering functionality via augmented topology for graph heterophily. Extensive experiments demonstrate the superiority of TEDGCN on node classification tasks for a variety of homophilic and heterophilic graphs.
AB - Finding the proper depth d of a graph convolutional network (GCN) that provides strong representation ability has drawn significant attention, yet nonetheless largely remains an open problem for the graph learning community. Although noteworthy progress has been made, the depth or the number of layers of a corresponding GCN is realized by a series of graph convolution operations, which naturally makes d a positive integer (d ∈ N+). An interesting question is whether breaking the constraint of N+ by making d a real number (d ∈ R) can bring new insights into graph learning mechanisms. In this work, by redefining GCN's depth d as a trainable parameter continuously adjustable within (−∞, +∞), we open a new door of controlling its signal processing capability to model graph homophily/heterophily (nodes with similar/dissimilar labels/attributes tend to be inter-connected). A simple and powerful GCN model TEDGCN, is proposed to retain the simplicity of GCN and meanwhile automatically search for the optimal d without the prior knowledge regarding whether the input graph is homophilic or heterophilic. Negative-valued d intrinsically enables high-pass frequency filtering functionality via augmented topology for graph heterophily. Extensive experiments demonstrate the superiority of TEDGCN on node classification tasks for a variety of homophilic and heterophilic graphs.
UR - http://www.scopus.com/inward/record.url?scp=85182852517&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85182852517&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:85182852517
SN - 1049-5258
VL - 36
JO - Advances in Neural Information Processing Systems
JF - Advances in Neural Information Processing Systems
T2 - 37th Conference on Neural Information Processing Systems, NeurIPS 2023
Y2 - 10 December 2023 through 16 December 2023
ER -