From Trainable Negative Depth to Edge Heterophily in Graphs

Yuchen Yan, Yuzhong Chen, Huiyuan Chen, Minghua Xu, Mahashweta Das, Hao Yang, Hanghang Tong

Research output: Contribution to journalConference articlepeer-review

Abstract

Finding the proper depth d of a graph convolutional network (GCN) that provides strong representation ability has drawn significant attention, yet nonetheless largely remains an open problem for the graph learning community. Although noteworthy progress has been made, the depth or the number of layers of a corresponding GCN is realized by a series of graph convolution operations, which naturally makes d a positive integer (d ∈ N+). An interesting question is whether breaking the constraint of N+ by making d a real number (d ∈ R) can bring new insights into graph learning mechanisms. In this work, by redefining GCN's depth d as a trainable parameter continuously adjustable within (−∞, +∞), we open a new door of controlling its signal processing capability to model graph homophily/heterophily (nodes with similar/dissimilar labels/attributes tend to be inter-connected). A simple and powerful GCN model TEDGCN, is proposed to retain the simplicity of GCN and meanwhile automatically search for the optimal d without the prior knowledge regarding whether the input graph is homophilic or heterophilic. Negative-valued d intrinsically enables high-pass frequency filtering functionality via augmented topology for graph heterophily. Extensive experiments demonstrate the superiority of TEDGCN on node classification tasks for a variety of homophilic and heterophilic graphs.

Original languageEnglish (US)
JournalAdvances in Neural Information Processing Systems
Volume36
StatePublished - 2023
Event37th Conference on Neural Information Processing Systems, NeurIPS 2023 - New Orleans, United States
Duration: Dec 10 2023Dec 16 2023

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'From Trainable Negative Depth to Edge Heterophily in Graphs'. Together they form a unique fingerprint.

Cite this