Frequent pattern mining: Current status and future directions

Jiawei Han, Hong Cheng, Dong Xin, Xifeng Yan

Research output: Contribution to journalArticlepeer-review


Frequent pattern mining has been a focused theme in data mining research for over a decade. Abundant literature has been dedicated to this research and tremendous progress has been made, ranging from efficient and scalable algorithms for frequent itemset mining in transaction databases to numerous research frontiers, such as sequential pattern mining, structured pattern mining, correlation mining, associative classification, and frequent pattern-based clustering, as well as their broad applications. In this article, we provide a brief overview of the current status of frequent pattern mining and discuss a few promising research directions. We believe that frequent pattern mining research has substantially broadened the scope of data analysis and will have deep impact on data mining methodologies and applications in the long run. However, there are still some challenging research issues that need to be solved before frequent pattern mining can claim a cornerstone approach in data mining applications.

Original languageEnglish (US)
Pages (from-to)55-86
Number of pages32
JournalData Mining and Knowledge Discovery
Issue number1
StatePublished - Aug 2007


  • Applications
  • Association rules
  • Data mining research
  • Frequent pattern mining

ASJC Scopus subject areas

  • Information Systems
  • Computer Science Applications
  • Computer Networks and Communications


Dive into the research topics of 'Frequent pattern mining: Current status and future directions'. Together they form a unique fingerprint.

Cite this