FRaZ: A Generic High-Fidelity Fixed-Ratio Lossy Compression Framework for Scientific Floating-point Data

Robert Underwood, Sheng Di, Jon C. Calhoun, Franck Cappello

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

With ever-increasing volumes of scientific floating-point data being produced by high-performance computing applications, significantly reducing scientific floating-point data size is critical, and error-controlled lossy compressors have been developed for years. None of the existing scientific floating-point lossy data compressors, however, support effective fixed-ratio lossy compression. Yet fixed-ratio lossy compression for scientific floating-point data not only compresses to the requested ratio but also respects a user-specified error bound with higher fidelity. In this paper, we present FRaZ: a generic fixed-ratio lossy compression framework respecting user-specified error constraints. The contribution is twofold. (1) We develop an efficient iterative approach to accurately determine the appropriate error settings for different lossy compressors based on target compression ratios. (2) We perform a thorough performance and accuracy evaluation for our proposed fixed-ratio compression framework with multiple state-of-the-art error-controlled lossy compressors, using several real-world scientific floating-point datasets from different domains. Experiments show that FRaZ effectively identifies the optimum error setting in the entire error setting space of any given lossy compressor. While fixed-ratio lossy compression is slower than fixed-error compression, it provides an important new lossy compression technique for users of very large scientific floating-point datasets.

Original languageEnglish (US)
Title of host publicationProceedings - 2020 IEEE 34th International Parallel and Distributed Processing Symposium, IPDPS 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages567-577
Number of pages11
ISBN (Electronic)9781728168760
DOIs
StatePublished - May 2020
Externally publishedYes
Event34th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2020 - New Orleans, United States
Duration: May 18 2020May 22 2020

Publication series

NameProceedings - 2020 IEEE 34th International Parallel and Distributed Processing Symposium, IPDPS 2020

Conference

Conference34th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2020
Country/TerritoryUnited States
CityNew Orleans
Period5/18/205/22/20

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Hardware and Architecture
  • Safety, Risk, Reliability and Quality

Fingerprint

Dive into the research topics of 'FRaZ: A Generic High-Fidelity Fixed-Ratio Lossy Compression Framework for Scientific Floating-point Data'. Together they form a unique fingerprint.

Cite this