Framing image description as a ranking task: Data, models and evaluation metrics

Micah Hodosh, Peter Young, Julia Hockenmaier

Research output: Contribution to journalArticlepeer-review


The ability to associate images with natural language sentences that describe what is depicted in them is a hallmark of image understanding, and a prerequisite for applications such as sentence-based image search. In analogy to image search, we propose to frame sentence-based image annotation as the task of ranking a given pool of captions. We introduce a new benchmark collection for sentence-based image description and search, consisting of 8,000 images that are each paired with five different captions which provide clear descriptions of the salient entities and events. We introduce a number of systems that perform quite well on this task, even though they are only based on features that can be obtained with minimal supervision. Our results clearly indicate the importance of training on multiple captions per image, and of capturing syntactic (word order-based) and semantic features of these captions. We also perform an in-depth comparison of human and automatic evaluation metrics for this task, and propose strategies for collecting human judgments cheaply and on a very large scale, allowing us to augment our collection with additional relevance judgments of which captions describe which image. Our analysis shows that metrics that consider the ranked list of results for each query image or sentence are significantly more robust than metrics that are based on a single response per query. Moreover, our study suggests that the evaluation of ranking-based image description systems may be fully automated.

Original languageEnglish (US)
Pages (from-to)853-899
Number of pages47
JournalJournal of Artificial Intelligence Research
StatePublished - Aug 2013

ASJC Scopus subject areas

  • Artificial Intelligence


Dive into the research topics of 'Framing image description as a ranking task: Data, models and evaluation metrics'. Together they form a unique fingerprint.

Cite this