Fractional statistics and duality: Strong tunneling behavior of edge states of quantum hall liquids in the jain sequence

Claudio Chamon, Eduardo Fradkin, Ana López

Research output: Contribution to journalArticlepeer-review

Abstract

While the values for the fractional charge and fractional statistics coincide for fractional Hall (FQH) states in the Laughlin sequence, they do not for more general FQH states, such as those in the Jain sequence. This mismatch leads to additional phase factors in the weak coupling expansion for tunneling between edge states which alter the nature of the strong tunneling limit. We show here how to construct a weak-strong coupling duality for generalized FQH states with sharp edges. The correct dualization of fractionally charged quasiparticles into integer charged fermions is a consistency requirement for a theory of FQH edge states with a simple edge. We show that this duality also applies for weakly reconstructed edges.

Original languageEnglish (US)
Article number176801
JournalPhysical review letters
Volume98
Issue number17
DOIs
StatePublished - Apr 24 2007

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Fractional statistics and duality: Strong tunneling behavior of edge states of quantum hall liquids in the jain sequence'. Together they form a unique fingerprint.

Cite this