Fractional quantum Hall junctions and two-channel Kondo models

Eduardo Fradkin, Nancy P. Sandler

Research output: Contribution to journalArticlepeer-review

Abstract

A mapping between fractional quantum Hall (FQH) junctions and the two-channel Kondo model is presented. We discuss this relation in detail for the particular case of a junction of a FQH state at v = 1/3 and a normal metal. We show that in the strong coupling regime this junction has a non-Fermi-liquid fixed point. At this fixed point the electron Green's function has a branch cut and the impurity entropy is equal to S = 1/2 In 2. We construct the space of perturbations at the strong coupling fixed point and find that the dimension of the tunneling operator is 1/2. These properties are strongly reminiscent of the non-Fermi-liquid fixed points of a number of quantum impurity models, particularly the two-channel Kondo model. However we have found that, in spite of these similarities, the Hilbert spaces of these two systems are quite different. In particular, although in a special limit the Hamiltonians of both systems are the same, their Hilbert spaces are not since they are determined by physically distinct boundary conditions. As a consequence the spectrum of operators in the two problems is different.

Original languageEnglish (US)
Article number235301
Pages (from-to)2353011-23530111
Number of pages21177101
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume63
Issue number23
StatePublished - 2001

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Fractional quantum Hall junctions and two-channel Kondo models'. Together they form a unique fingerprint.

Cite this