Formation waters from Cambrian-age strata, Illinois Basin, USA: Constraints on their origin and evolution

Samuel V. Panno, Keith C. Hackley, Randall A. Locke, Ivan G. Krapac, Bracken Wimmer, Abbas Iranmanesh, Walton R. Kelly

Research output: Contribution to journalArticlepeer-review

Abstract

Recently, brine samples from the Cambrian-age Mount Simon Formation (the deepest, most inaccessible sedimentary rock formation of the Illinois Basin) and the overlying Ironton-Galesville Formation were collected as part of a major research effort evaluating the feasibility of sequestration of carbon dioxide in deep geologic formations. Halide and halide/cation ratios (especially Cl/Br and Na/Br ratios) from groundwater samples collected during this investigation suggest that the brines of the Cambrian-age strata formed by the evaporation of seawater well beyond the point of halite precipitation. The Cl/Br and Na/Br ratios, the presence of Mississippi-Valley-Type (MVT) ore mineralization in close proximity to the Illinois Basin, and the tectonic history of the region and the Illinois Basin suggest that components of ore-forming brines and perhaps crystalline basement brine are likely still present within the Mount Simon Formation. Halide and cation/halide ratio plots show that these brines have mixed with and have been diluted by subaerially evaporated seawater, seawater and dilute groundwater. Movement of brines out of the Mount Simon Formation and/or exchange with brines of other formations is constrained by the overlying, siltstone- and shale-rich Eau Claire Formation, a low-permeability layer.The most plausible interpretation of the halide and halide/cation ratio data is that the brines of the Cambrian-age strata were introduced to the Illinois Basin from outside of the basin, perhaps when the Illinois Basin was connected to the Arkoma (Oklahoma and Arkansas) and Black Warrior Basins (Alabama and Mississippi) via the Reelfoot Rift during Cambrian and early Ordovician time. In addition, the presence of some percentage of high NaCl, low Cl/Br brines from the crystalline basement is suggested given the geochemical relationships of the halide and cation/halide ratios and the tectonic history of the Illinois Basin. Finally, halide and cation/halide ratios determined by this investigation, and regional geochemical evidence and hydrogeologic modeling (by others) suggest that the brines of these strata probably were affected by regional hydrothermal activity during Permian time that was responsible for the MVT ore deposits of the Midwestern U.S. Thus, the brines of the deepest strata of the Illinois Basin constitute a different, more complex type of fluid than those found elsewhere in the basin. Halide and halide-cation ratios suggest that these deep brines are dominated by residual evaporitic brine (possibly originating as ore-forming brines) with dilution by seawater and dilute groundwater. Other components may include subaerially evaporated seawater and crystalline basement brines.

Original languageEnglish (US)
Pages (from-to)184-197
Number of pages14
JournalGeochimica et Cosmochimica Acta
Volume122
Issue number1
DOIs
StatePublished - Dec 1 2013

Keywords

  • ISGS
  • ISWS

ASJC Scopus subject areas

  • Geochemistry and Petrology

Fingerprint

Dive into the research topics of 'Formation waters from Cambrian-age strata, Illinois Basin, USA: Constraints on their origin and evolution'. Together they form a unique fingerprint.

Cite this