Form roughness and the absence of secondary flow in a large confluence-diffluence, Rio Paraná, Argentina

Daniel R. Parsons, James L. Best, Stuart N. Lane, Oscar Orfeo, Richard J. Hardy, Ray Kostaschuk

Research output: Contribution to journalArticlepeer-review

Abstract

Confluence-diffluence units are key elements within many river networks, having a major impact upon the routing of flow and sediment, and hence upon channel change. Although much progress has been made in understanding river confluences, and increasing attention is being paid to bifurcations and the important role of bifurcation asymmetry, most studies have been conducted in laboratory flumes or within small rivers with width:depth (aspect) ratios less than 50. This paper presents results of a field-based study that details the bed morphology and 3D flow structure within a very large confluence-diffluence in the Río Paraná, Argentina, with a width:depth ratio of approximately 200. Flow within the confluence-diffluence is dominated largely by the bed roughness, in the form of sand dunes; coherent, channel-scale, secondary flow cells, that have been identified as important aspects of the flow field within smaller channels, and assumed to be present within large rivers, are generally absent in this reach. This finding has profound implications for flow mixing rates, sediment transport rates and pathways, and thus the interpretation of confluence-diffluence morphology and sedimentology.

Original languageEnglish (US)
Pages (from-to)155-162
Number of pages8
JournalEarth Surface Processes and Landforms
Volume32
Issue number1
DOIs
StatePublished - Jan 2007

Keywords

  • Confluence
  • Diffluence
  • Large river
  • Paraná River
  • Secondary flow

ASJC Scopus subject areas

  • Geography, Planning and Development
  • Earth-Surface Processes
  • Earth and Planetary Sciences (miscellaneous)

Fingerprint

Dive into the research topics of 'Form roughness and the absence of secondary flow in a large confluence-diffluence, Rio Paraná, Argentina'. Together they form a unique fingerprint.

Cite this