Abstract
Machine learning methods have seen increased application to geospatial environmental problems, such as precipitation nowcasting, haze forecasting, and crop yield prediction. However, many of the machine learning methods applied to mosquito population and disease forecasting do not inherently take into account the underlying spatial structure of the given data. In our work, we apply a spatially aware graph neural network model consisting of GraphSAGE layers to forecast the presence of West Nile virus in Illinois, to aid mosquito surveillance and abatement efforts within the state. More generally, we show that graph neural networks applied to irregularly sampled geospatial data can exceed the performance of a range of baseline methods including logistic regression, XGBoost, and fully-connected neural networks.
Original language | English (US) |
---|---|
Article number | e2023GH000784 |
Journal | GeoHealth |
Volume | 8 |
Issue number | 7 |
DOIs | |
State | Published - Jul 2024 |
Keywords
- West Nile virus
- geospatial
- machine learning
- graph neural network
- mosquito
- forecasting
- Illinois
- prediction
- spatial dependence
ASJC Scopus subject areas
- Global and Planetary Change
- Epidemiology
- Water Science and Technology
- Waste Management and Disposal
- Pollution
- Public Health, Environmental and Occupational Health
- Management, Monitoring, Policy and Law
- Health, Toxicology and Mutagenesis