TY - JOUR
T1 - Follicle-stimulating hormone-responsive cytoskeletal genes in rat granulosa cells
T2 - Class I β-tubulin, tropomyosin-4, and kinesin heavy chain
AU - Grieshaber, Nicole A.
AU - Ko, Chemyong
AU - Grieshaber, Scott S.
AU - Ji, Inhae
AU - Ji, Tae H.
PY - 2003/1/1
Y1 - 2003/1/1
N2 - FSH regulates gene expression for granulosa cell differentiation and follicular development. Therefore, FSH-responsive genes are crucial, but only a few genes have been identified for the early stage of follicular development. In particular, little is known about cytoskeletal genes, which likely play essential roles in the morphological changes such as the antrum formation, a major landmark. FSH is also known to induce the differentiation of an immature, undifferentiated rat ovary granulosa (ROG) cell line. Our data show that FSH induced massive yet distinct reorganization of microtubules and the actin cytoskeletons as well as morphological changes. To identify those genes responding to FSH during the differentiation, differential display was performed on ROG cells. Of the 80 FSH-responsive genes identified, there were three cytoskeleton-related genes (class I β-tubulin, tropomyosin 4, and kinesin heavy chain), which are crucial for intracellular morphogenesis, transport, and differentiation. Northern blots show that the level of these gene transcripts reached a peak at 6 h after FSH treatment and subsided at 24 h. FSH induced the similar temporal expression not only in granulosa cells isolated from immature rats, but also in vivo. For instance, in situ hybridization showed that β-tubulin mRNA was transiently expressed in the granulosa cells of large preantral and early antral follicles. Despite the same temporal expression, the regulatory mechanisms of the three genes were strikingly different. As an example, cycloheximide blocked the β-tubulin mRNA expression, whereas it increased tropomyosin-4 (TM4) mRNA. Yet, it did not impact kinesin heavy chain (Khc) mRNA. In conclusion, FSH induces the massive reorganization of the cytoskeletons and morphological changes by the selective regulation of the gene expression, protein synthesis, and rearrangement of the cytoskeletal proteins in the ROG cells and probably, specific follicles and granulosa cells.
AB - FSH regulates gene expression for granulosa cell differentiation and follicular development. Therefore, FSH-responsive genes are crucial, but only a few genes have been identified for the early stage of follicular development. In particular, little is known about cytoskeletal genes, which likely play essential roles in the morphological changes such as the antrum formation, a major landmark. FSH is also known to induce the differentiation of an immature, undifferentiated rat ovary granulosa (ROG) cell line. Our data show that FSH induced massive yet distinct reorganization of microtubules and the actin cytoskeletons as well as morphological changes. To identify those genes responding to FSH during the differentiation, differential display was performed on ROG cells. Of the 80 FSH-responsive genes identified, there were three cytoskeleton-related genes (class I β-tubulin, tropomyosin 4, and kinesin heavy chain), which are crucial for intracellular morphogenesis, transport, and differentiation. Northern blots show that the level of these gene transcripts reached a peak at 6 h after FSH treatment and subsided at 24 h. FSH induced the similar temporal expression not only in granulosa cells isolated from immature rats, but also in vivo. For instance, in situ hybridization showed that β-tubulin mRNA was transiently expressed in the granulosa cells of large preantral and early antral follicles. Despite the same temporal expression, the regulatory mechanisms of the three genes were strikingly different. As an example, cycloheximide blocked the β-tubulin mRNA expression, whereas it increased tropomyosin-4 (TM4) mRNA. Yet, it did not impact kinesin heavy chain (Khc) mRNA. In conclusion, FSH induces the massive reorganization of the cytoskeletons and morphological changes by the selective regulation of the gene expression, protein synthesis, and rearrangement of the cytoskeletal proteins in the ROG cells and probably, specific follicles and granulosa cells.
UR - http://www.scopus.com/inward/record.url?scp=0037225481&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0037225481&partnerID=8YFLogxK
U2 - 10.1210/en.2002-220477
DO - 10.1210/en.2002-220477
M3 - Article
C2 - 12488327
AN - SCOPUS:0037225481
SN - 0013-7227
VL - 144
SP - 29
EP - 39
JO - Endocrinology
JF - Endocrinology
IS - 1
ER -