Folate deficiency disturbs hepatic methionine metabolism and promotes liver injury in the ethanol-fed micropig

Charles H. Halsted, Jesus A. Villanueva, Angela M. Devlin, Onni Niemelä, Seppo Parkkila, Timothy A. Garrow, Lynn M. Wallock, Mark K. Shigenaga, Stepan Melnyk, S. Jill James

Research output: Contribution to journalArticlepeer-review

Abstract

Alcoholic liver disease is associated with abnormal hepatic methionine metabolism and folate deficiency. Because folate is integral to the methionine cycle, its deficiency could promote alcoholic liver disease by enhancing ethanol-induced perturbations of hepatic methionine metabolism and DNA damage. We grouped 24 juvenile micropigs to receive folate-sufficient (FS) or folate-depleted (FD) diets or the same diets containing 40% of energy as ethanol (FSE and FDE) for 14 wk, and the significance of differences among the groups was determined by ANOVA. Plasma homocysteine levels were increased in all experimental groups from 6 wk onward and were greatest in FDE. Ethanol feeding reduced liver methionine synthase activity, S-adenosylmethionine (SAM), and glutathione, and elevated plasma malondialdehyde (MDA) and alanine transaminase. Folate deficiency decreased liver folate levels and increased global DNA hypomethylation. Ethanol feeding and folate deficiency acted together to decrease the liver SAM/S-adenosylhomocysteine (SAH) ratio and to increase liver SAH, DNA strand breaks, urinary 8-oxo-2′-deoxyguanosine [oxo(8)dG]/mg of creatinine, plasma homocysteine, and aspartate transaminase by more than 8-fold. Liver SAM correlated positively with glutathione, which correlated negatively with plasma MDA and urinary oxo(8)dG. Liver SAM/SAH correlated negatively with DNA strand breaks, which correlated with urinary oxo(8)dG. Livers from ethanol-fed animals showed increased centrilobular CYP2E1 and protein adducts with acetaldehyde and MDA. Steatohepatitis occurred in five of six pigs in FDE but not in the other groups. In summary, folate deficiency enhances perturbations in hepatic methionine metabolism and DNA damage while promoting alcoholic liver injury.

Original languageEnglish (US)
Pages (from-to)10072-10077
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume99
Issue number15
DOIs
StatePublished - Jul 23 2002

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Folate deficiency disturbs hepatic methionine metabolism and promotes liver injury in the ethanol-fed micropig'. Together they form a unique fingerprint.

Cite this