Abstract
Human land use has transformed the landscapes, ecosystems and hydrology of the North American Midcontinent. One widespread impact of this transformation is increased runoff and accelerated soil erosion, which, along with direct human channel modifications and artificial drainage, have dramatically altered hydrologic and ecological conditions in streams and rivers with far-reaching results. A legacy of this change in streams and rivers is preserved on floodplains throughout the region in sediment known as post-settlement alluvium (PSA). Documenting the spatial and temporal pattern of historic floodplain sedimentation in the drainage network is part of a larger effort to understand decadal and century-scale sediment routing through the drainage system and the role of floodplain sedimentation in carbon sequestration. Fly ash, a product of high-temperature coal combustion, began to accumulate on the landscape in the early historic period (c.a. 1840-1850 in Iowa and Illinois) as coal-burning technology such as steam engines came into use after 1850; prior to which no source of fly ash was present. Release of fly ash from coal burning in power plants and steam locomotives likely peaked in the early-mid 20th century. Fly ash particles ( approximately 1 to 10% magnetic) are identified by their spheroidal shape and range in size from coarse clay to silt ( approximately 1-63 mu ). By identifying the percentage of fly ash spheroids in the magnetic separate (10-60 mu size range) of a soil or sediment profile, the pre-fly ash Historic surface could be discerned. Application of this technique in selected localities in eastern Iowa (Clear Creek drainage) and central Illinois (Sangamon River drainage) resulted in successful demarcation of the PSA contact in areas where the boundary was physically evident. Bolstered by this success we were able to confidently demark the PSA contact in other settings where the boundary was not as physically evident. This relatively easy to implement, inexpensive tool will provide us with critical ground truth data for understanding long-term sediment movement through drainage basins and for modelling landscape evolution during the Anthropocene.
Original language | English (US) |
---|---|
Title of host publication | American Geophysical Union Fall Meeting |
Place of Publication | Washington, DC |
Publisher | American Geophysical Union |
Volume | 2014 |
State | Published - 2014 |
Keywords
- ISGS