TY - JOUR
T1 - Flux in Tilted Potential Systems
T2 - Negative Resistance and Persistence
AU - Baryshnikov, Yuliy
AU - Kvalheim, Matthew D.
N1 - Publisher Copyright:
© 2023, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2023/6
Y1 - 2023/6
N2 - Many real-world systems are well-modeled by Brownian particles subject to gradient dynamics plus noise arising, e.g., from the thermal fluctuations of a heat bath. Of central importance to many applications in physics and biology (e.g., molecular motors) is the net steady-state particle current or “flux” enabled by the noise and an additional driving force. However, this flux cannot usually be calculated analytically. Motivated by this, we investigate the steady-state flux generated by a nondegenerate diffusion process on a general compact manifold; such fluxes are essentially equivalent to the stochastic intersection numbers of Manabe (Osaka Math J 19(2):429–457, 1982). In the case that noise is small and the drift is “gradient-like” in an appropriate sense, we derive a graph-theoretic formula for the small-noise asymptotics of the flux using Freidlin–Wentzell theory. When additionally the drift is a local gradient sufficiently close to a generic global gradient, there is a natural flux equivalent to the entropy production rate—in this case our graph-theoretic formula becomes Morse-theoretic, and the result admits a description in terms of persistent homology. As an application, we provide a mathematically rigorous explanation of the paradoxical “negative resistance” phenomenon in Brownian transport discovered by Cecchi and Magnasco (Phys Rev Lett 76(11):1968, 1996).
AB - Many real-world systems are well-modeled by Brownian particles subject to gradient dynamics plus noise arising, e.g., from the thermal fluctuations of a heat bath. Of central importance to many applications in physics and biology (e.g., molecular motors) is the net steady-state particle current or “flux” enabled by the noise and an additional driving force. However, this flux cannot usually be calculated analytically. Motivated by this, we investigate the steady-state flux generated by a nondegenerate diffusion process on a general compact manifold; such fluxes are essentially equivalent to the stochastic intersection numbers of Manabe (Osaka Math J 19(2):429–457, 1982). In the case that noise is small and the drift is “gradient-like” in an appropriate sense, we derive a graph-theoretic formula for the small-noise asymptotics of the flux using Freidlin–Wentzell theory. When additionally the drift is a local gradient sufficiently close to a generic global gradient, there is a natural flux equivalent to the entropy production rate—in this case our graph-theoretic formula becomes Morse-theoretic, and the result admits a description in terms of persistent homology. As an application, we provide a mathematically rigorous explanation of the paradoxical “negative resistance” phenomenon in Brownian transport discovered by Cecchi and Magnasco (Phys Rev Lett 76(11):1968, 1996).
UR - http://www.scopus.com/inward/record.url?scp=85146614866&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85146614866&partnerID=8YFLogxK
U2 - 10.1007/s00220-022-04622-4
DO - 10.1007/s00220-022-04622-4
M3 - Article
AN - SCOPUS:85146614866
SN - 0010-3616
VL - 400
SP - 853
EP - 930
JO - Communications in Mathematical Physics
JF - Communications in Mathematical Physics
IS - 2
ER -