Fluorescent probes for shock compression spectroscopy of microstructured materials

James M. Christensen, Alexandr A. Banishev, Dana D. Dlott

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We are developing fluorescent probes to obtain dynamic two-dimensional pressure maps of shocked microstructured materials. We have fabricated silica nano- or micro-spheres doped with rhodamine 6G dye (R6G) which fluoresce strongly, and which may be dispersed throughout a microstructured sample. Alternatively we can grow thin skin layers of dye-doped silica on the surface of particles. The emissive microspheres were embedded in poly-methyl methacrylate (PMMA) and were excited by a quasi-continuous laser. When the samples were shocked to 3-8.4 GPa using laser-driven flyer plates, the emission redshifted and lost intensity. When encapsulating the dye in silica, the emission became brighter and the intensity-loss response became fast enough to monitor nanosecond shock effects. Preliminary data are reported showing the intensity loss in a shocked microstructured medium, an artificial sand, consisting of dye-coated silica microspheres.

Original languageEnglish (US)
Title of host publicationShock Compression of Condensed Matter - 2015
Subtitle of host publicationProceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter
EditorsRamon Ravelo, Thomas Sewell, Ricky Chau, Timothy Germann, Ivan I. Oleynik, Suhithi Peiris
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735414570
DOIs
StatePublished - Jan 13 2017
Event19th Biennial American Physical Society Conference on Shock Compression of Condensed Matter, SCCM 2015 - Tampa, United States
Duration: Jun 14 2015Jun 19 2015

Publication series

NameAIP Conference Proceedings
Volume1793
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Other

Other19th Biennial American Physical Society Conference on Shock Compression of Condensed Matter, SCCM 2015
Country/TerritoryUnited States
CityTampa
Period6/14/156/19/15

ASJC Scopus subject areas

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Fluorescent probes for shock compression spectroscopy of microstructured materials'. Together they form a unique fingerprint.

Cite this