TY - JOUR
T1 - Fluorescence resonance energy transfer analysis of cytochromes P450 2C2 and 2E1 molecular interactions in living cells
AU - Szczesna-Skorupa, Elzbieta
AU - Mallah, Bahar
AU - Kemper, Byron
PY - 2003/8/15
Y1 - 2003/8/15
N2 - The molecular organization of microsomal cytochromes P450 (P450s) and formation of complexes with P450 reductase have been studied previously with isolated proteins and in reconstituted systems. Although these studies demonstrated that some P450s oligomerize in vitro, neither oligomerization nor interactions of P450 with P450 reductase have been studied in living cells. Here we have used fluorescence resonance energy transfer (FRET) to study P450 oligomerization and binding to P450 reductase in live transfected cells. Cytochrome P450 2C2, but not P450 2E1, forms homo-oligomeric structures, and this self-association is mediated by the signal-anchor sequence. Because P450 2C2, in contrast to P450 2E1, is directly retained in the endoplasmic reticulum (ER), these results could suggest that oligomerization may prevent transport from the ER. However, P450 2C1 signal-anchor sequence chimera defective in ER retention also formed oligomers, and chimera containing the cytoplasmic domain of P450 2C2, which is directly retained in the ER, did not exhibit self-oligomerization, which indicates that oligomerization is not correlated with direct retention. By using FRET, we have also detected binding of P450 2C2 and P450 2E1 to P450 reductase. In contrast to self-oligomerization, the catalytic domain can mediate an interaction of P450 2C2 with P450 reductase. These results suggest that microsomal P450s may differ in their quaternary structure but that these differences do not detectably affect interaction with the reductase or transport from the ER.
AB - The molecular organization of microsomal cytochromes P450 (P450s) and formation of complexes with P450 reductase have been studied previously with isolated proteins and in reconstituted systems. Although these studies demonstrated that some P450s oligomerize in vitro, neither oligomerization nor interactions of P450 with P450 reductase have been studied in living cells. Here we have used fluorescence resonance energy transfer (FRET) to study P450 oligomerization and binding to P450 reductase in live transfected cells. Cytochrome P450 2C2, but not P450 2E1, forms homo-oligomeric structures, and this self-association is mediated by the signal-anchor sequence. Because P450 2C2, in contrast to P450 2E1, is directly retained in the endoplasmic reticulum (ER), these results could suggest that oligomerization may prevent transport from the ER. However, P450 2C1 signal-anchor sequence chimera defective in ER retention also formed oligomers, and chimera containing the cytoplasmic domain of P450 2C2, which is directly retained in the ER, did not exhibit self-oligomerization, which indicates that oligomerization is not correlated with direct retention. By using FRET, we have also detected binding of P450 2C2 and P450 2E1 to P450 reductase. In contrast to self-oligomerization, the catalytic domain can mediate an interaction of P450 2C2 with P450 reductase. These results suggest that microsomal P450s may differ in their quaternary structure but that these differences do not detectably affect interaction with the reductase or transport from the ER.
UR - http://www.scopus.com/inward/record.url?scp=0043234255&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0043234255&partnerID=8YFLogxK
U2 - 10.1074/jbc.M301489200
DO - 10.1074/jbc.M301489200
M3 - Article
C2 - 12766165
AN - SCOPUS:0043234255
SN - 0021-9258
VL - 278
SP - 31269
EP - 31276
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 33
ER -