## Abstract

We show that the free energy in the mixed p-spin models of spin glasses does not superconcentrate in the presence of external field, which means that its variance is of the order suggested by the Poincaré inequality. This complements the result of Chatterjee who showed that the free energy superconcentrates when there is no external field. For models without odd p-spin interactions for p⩾ 3 , we prove the central limit theorem for the free energy at any temperature and give an explicit formula for the limiting variance. Although we only deal with the case of Ising spins, all our results can be extended to the spherical models as well.

Original language | English (US) |
---|---|

Pages (from-to) | 41-53 |

Number of pages | 13 |

Journal | Probability Theory and Related Fields |

Volume | 168 |

Issue number | 1-2 |

DOIs | |

State | Published - Jun 1 2017 |

## ASJC Scopus subject areas

- Analysis
- Statistics and Probability
- Statistics, Probability and Uncertainty