Flow structure at an asymmetrical stream confluence

Bruce L. Rhoads, Stephen T. Kenworthy

Research output: Contribution to journalArticlepeer-review

Abstract

Measurements of downstream and cross-stream velocities at a small, asymmetrical stream confluence show that the structure of low-stage flows is influenced by the tributary/main stem momentum flux ratio, the total discharge of the incoming flows, and the bed morphology. Flow accelerates through the confluence during all three measured events. This acceleration is associated with a downstream reduction in channel capacity caused in part by the presence of a large bar along the inner bank of the downstream channel. As the momentum ratio increases, flow from the lateral tributary increasingly deflects flow from the main stream toward the outer channel bank within the confluence. As a result, the mixing interface between the converging flows also shifts outward. The large bar in the downstream channel deflects flow along the inner bank toward the adjacent scour hole, enhancing flow convergence downstream of the confluence and producing a region of flow separation adjacent to, or in the lee of the bar. The loci of maximum topographic deflection and flow separation vary with momentum ratio and total discharge. Secondary circulation within the downstream channel is characterized by a single large helical cell when the momentum ratio exceeds one, and weak surface-convergent helical cells on opposite sides of the mixing interface when the momentum ratio is less than one. Curvature of the flow, and thus the strength of helical motion, is greatest on the tributary side of the mixing interface. Although the flow events measured in this study did not exceed the threshold for sediment movement, the bed morphology at the confluence can be explained by the flow structure observed during these low-stage events, suggesting that formative flows may have similar downstream and cross-stream velocity fields.

Original languageEnglish (US)
Pages (from-to)273-293
Number of pages21
JournalGeomorphology
Volume11
Issue number4
DOIs
StatePublished - Mar 1995

ASJC Scopus subject areas

  • Earth-Surface Processes

Fingerprint

Dive into the research topics of 'Flow structure at an asymmetrical stream confluence'. Together they form a unique fingerprint.

Cite this