@article{717c4757594741528fec9ee3d698a770,
title = "Flow-induced interfacial deformation structures (FIDS): Implications for the interpretation of palaeocurrents, flow dynamics and substrate rheology",
abstract = "Sole structures on the base of turbidites, and other bed types, are typically classified into scour marks and tool marks, such as flutes, grooves, skim marks and prod marks. Yet, there are a range of other common sole marks that are unrelated to scouring or tools, and whose origin is poorly understood. Prominent among these sole structures are longitudinal ridges and furrows, and {\textquoteleft}dinosaur leather{\textquoteright} structures associated with mud ripples. Herein, these features are described and it is argued that they are the product of deformation of the substrate during a sediment gravity flow event. In these flow-induced interfacial deformation structures (FIDS), a soft cohesive substrate undergoes deformation in response to a buoyant force induced by the denser basal component of an overriding flow, and the flow interacts with this buoyant deformation through shear to remould the substrate. Variations in the relative strength of these buoyant and shear-induced forces explain the wide range of FIDS that can form. This FIDS model reinterprets the formation of longitudinal ridges and furrows, which have previously been classified as scour marks, and explains their distinctive spatial patterns. Furthermore, the new model builds on the seminal work of D{\.z}u{\l}y{\'n}ski and colleagues in the 1960s and 1970s, who identified that these structures contain key palaeocurrent information, and it is argued that such information is largely under-utilized. Importantly, alongside their utility as palaeocurrent indicators, FIDS provide insights into the rheology of the substrate at the time of their formation, and thus the nature of basal flow conditions in the formative flows.",
keywords = "Longitudinal ridges and furrows, mud ripple, sediment gravity flows, sole mark, transitional flow",
author = "Jeff Peakall and Best, {J. A.M.E.S.L.} and Baas, {Jaco H.} and Wignall, {Paul B.} and Hodgson, {David M.} and Piotr {\L}apcik",
note = "JP, JB and JHB are grateful to the UK Natural Environment Research Council for grant NE/C514823/1 that enabled our initial work on transitional flows. JP, JB, JHB and P\u0141 thank Alfred Uchman, Tomasz Pyrcz, Bart\u0142omiej Kajdas and Robert Czuchnowski for access to the Natural Sciences Education Centre at the Jagiellonian University, and for showing us sole marks in and around the Carpathians. Funding from the Jack and Richard C. Threet chair in Sedimentary Geology supported some of the work reported herein. Priya Subramanian is thanked for providing and modifying Fig. 18, and for associated discussion; Dan Matsumoto and Hajime Naruse are thanked for supplying an original of Fig. 9. Gareth Keevil is thanked for help with Figs 4 and 8. We thank reviewers Peter Haughton, Marco Patacci and Roberto Tinterri for their extremely insightful comments, and editors Fabrizio Felletti and Piret Plink-Bj\u00F6rklund. JP, JB and JHB are grateful to the UK Natural Environment Research Council for grant NE/C514823/1 that enabled our initial work on transitional flows. JP, JB, JHB and P\u0141 thank Alfred Uchman, Tomasz Pyrcz, Bart\u0142omiej Kajdas and Robert Czuchnowski for access to the Natural Sciences Education Centre at the Jagiellonian University, and for showing us sole marks in and around the Carpathians. Funding from the Jack and Richard C. Threet chair in Sedimentary Geology supported some of the work reported herein. Priya Subramanian is thanked for providing and modifying Fig. 18 , and for associated discussion; Dan Matsumoto and Hajime Naruse are thanked for supplying an original of Fig. 9 . Gareth Keevil is thanked for help with Figs 4 and 8 . We thank reviewers Peter Haughton, Marco Patacci and Roberto Tinterri for their extremely insightful comments, and editors Fabrizio Felletti and Piret Plink\u2010Bj\u00F6rklund.",
year = "2024",
month = oct,
doi = "10.1111/sed.13219",
language = "English (US)",
volume = "71",
pages = "1709--1743",
journal = "Sedimentology",
issn = "0037-0746",
publisher = "John Wiley & Sons, Ltd.",
number = "6",
}