TY - JOUR
T1 - Flow around a semicircular cylinder with passive flow control mechanisms
AU - Hamed, A. M.
AU - Vega, J.
AU - Liu, B.
AU - Chamorro, L. P.
N1 - Publisher Copyright:
© 2017, Springer-Verlag Berlin Heidelberg.
PY - 2017/3/1
Y1 - 2017/3/1
N2 - Wind tunnel experiments were performed to study the effect of passive flow control strategies on the wake and drag of a semicircular cylinder of infinite aspect ratio. High-resolution planar particle image velocimetry was used to obtain flow statistics around the semicircular cylinder at Reynolds number Re≈ 3.2 × 10 4 based on the cylinder diameter. The control mechanisms under consideration include rigid flaps of various lengths placed at the edges of the structure and a small slot along the symmetry plane of the cylinder. Mean velocity fields reveal the distinctive effects of each passive mechanism on the flow, such as velocity recovery, size of the recirculation bubble and location of the reattachment point. The distributions of turbulence kinetic energy and kinematic shear stress show the modulation of each passive control mechanism on the wake, including the onset and location of the maximum turbulence levels. Instantaneous and mean fields of swirling strength further highlight the role of the passive mechanisms in the vortex dynamics. Drag coefficient for the various cases was estimated indirectly from the flow measurements using a momentum balance. This approach shows that long flaps and slot were able to reduce drag with respect to the base case. The rigid flaps with length coincident with the diameter of the cylinder offered the best performance with drag reduction of ∼ 25%.
AB - Wind tunnel experiments were performed to study the effect of passive flow control strategies on the wake and drag of a semicircular cylinder of infinite aspect ratio. High-resolution planar particle image velocimetry was used to obtain flow statistics around the semicircular cylinder at Reynolds number Re≈ 3.2 × 10 4 based on the cylinder diameter. The control mechanisms under consideration include rigid flaps of various lengths placed at the edges of the structure and a small slot along the symmetry plane of the cylinder. Mean velocity fields reveal the distinctive effects of each passive mechanism on the flow, such as velocity recovery, size of the recirculation bubble and location of the reattachment point. The distributions of turbulence kinetic energy and kinematic shear stress show the modulation of each passive control mechanism on the wake, including the onset and location of the maximum turbulence levels. Instantaneous and mean fields of swirling strength further highlight the role of the passive mechanisms in the vortex dynamics. Drag coefficient for the various cases was estimated indirectly from the flow measurements using a momentum balance. This approach shows that long flaps and slot were able to reduce drag with respect to the base case. The rigid flaps with length coincident with the diameter of the cylinder offered the best performance with drag reduction of ∼ 25%.
UR - http://www.scopus.com/inward/record.url?scp=85014013029&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85014013029&partnerID=8YFLogxK
U2 - 10.1007/s00348-017-2309-y
DO - 10.1007/s00348-017-2309-y
M3 - Article
AN - SCOPUS:85014013029
SN - 0723-4864
VL - 58
JO - Experiments in Fluids
JF - Experiments in Fluids
IS - 3
M1 - 22
ER -