TY - JOUR
T1 - Flexibility Coexists with Shape-Persistence in Cyanostar Macrocycles
AU - Liu, Yun
AU - Singharoy, Abhishek
AU - Mayne, Christopher G.
AU - Sengupta, Arkajyoti
AU - Raghavachari, Krishnan
AU - Schulten, Klaus
AU - Flood, Amar H.
N1 - Publisher Copyright:
© 2016 American Chemical Society.
PY - 2016/4/27
Y1 - 2016/4/27
N2 - Shape-persistent macrocycles are attractive functional targets for synthesis, molecular recognition, and hierarchical self-assembly. Such macrocycles are noncollapsible and geometrically well-defined, and they are traditionally characterized by having repeat units and low conformational flexibility. Here, we find it necessary to refine these ideas in the face of highly flexible yet shape-persistent macrocycles. A molecule is shape-persistent if it has a small change in shape when perturbed by external stimuli (e.g., heat, light, and redox chemistry). In support of this idea, we provide the first examination of the relationships between a macrocycle's shape persistence, its conformational space, and the resulting functions. We do this with a star-shaped macrocycle called cyanostar that is flexible as well as being shape-persistent. We employed molecular dynamics (MD), density functional theory (DFT), and NMR experiments. Considering a thermal bath as a stimulus, we found a single macrocycle has 332 accessible conformers with olefins undergoing rapid interconversion by up-down and in-out motions on short time scales (0.2 ns). These many interconverting conformations classify single cyanostars as flexible. To determine and confirm that cyanostars are shape-persistent, we show that they have a high 87% shape similarity across these conformations. To further test the idea, we use the binding of diglyme to the single macrocycle as guest-induced stimulation. This guest has almost no effect on the conformational space. However, formation of a 2:1 sandwich complex involving two macrocycles enhances rigidity and dramatically shifts the conformer distribution toward perfect bowls. Overall, the present study expands the scope of shape-persistent macrocycles to include flexible macrocycles if, and only if, their conformers have similar shapes.
AB - Shape-persistent macrocycles are attractive functional targets for synthesis, molecular recognition, and hierarchical self-assembly. Such macrocycles are noncollapsible and geometrically well-defined, and they are traditionally characterized by having repeat units and low conformational flexibility. Here, we find it necessary to refine these ideas in the face of highly flexible yet shape-persistent macrocycles. A molecule is shape-persistent if it has a small change in shape when perturbed by external stimuli (e.g., heat, light, and redox chemistry). In support of this idea, we provide the first examination of the relationships between a macrocycle's shape persistence, its conformational space, and the resulting functions. We do this with a star-shaped macrocycle called cyanostar that is flexible as well as being shape-persistent. We employed molecular dynamics (MD), density functional theory (DFT), and NMR experiments. Considering a thermal bath as a stimulus, we found a single macrocycle has 332 accessible conformers with olefins undergoing rapid interconversion by up-down and in-out motions on short time scales (0.2 ns). These many interconverting conformations classify single cyanostars as flexible. To determine and confirm that cyanostars are shape-persistent, we show that they have a high 87% shape similarity across these conformations. To further test the idea, we use the binding of diglyme to the single macrocycle as guest-induced stimulation. This guest has almost no effect on the conformational space. However, formation of a 2:1 sandwich complex involving two macrocycles enhances rigidity and dramatically shifts the conformer distribution toward perfect bowls. Overall, the present study expands the scope of shape-persistent macrocycles to include flexible macrocycles if, and only if, their conformers have similar shapes.
UR - http://www.scopus.com/inward/record.url?scp=84964577497&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84964577497&partnerID=8YFLogxK
U2 - 10.1021/jacs.6b00712
DO - 10.1021/jacs.6b00712
M3 - Article
C2 - 27014837
AN - SCOPUS:84964577497
SN - 0002-7863
VL - 138
SP - 4843
EP - 4851
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 14
ER -