TY - JOUR
T1 - Five hundred years of anthropogenic mercury
T2 - Spatial and temporal release profiles
AU - Streets, David G.
AU - Horowitz, Hannah M.
AU - Lu, Zifeng
AU - Levin, Leonard
AU - Thackray, Colin P.
AU - Sunderland, Elsie M.
N1 - This work was supported by the Electric Power Research Institute under Contract No. 10004163 at Argonne National Laboratory and Contract No. 10005277 at Harvard University. Argonne National Laboratory is operated by UChicago Argonne, LLC, under Contract No. DE-AC02-06CH11357 with the US Department of Energy.
The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (‘Argonne’). Argonne, a US Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The USGovernment retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.
PY - 2019/7/22
Y1 - 2019/7/22
N2 - When released to the biosphere, mercury (Hg) is very mobile and can take millennia to be returned to a secure, long-term repository. Understanding where and when Hg was released as a result of human activities allows better quantification of present-day reemissions and future trajectories of environmental concentrations. In this work, we estimate the time-varying releases of Hg in seven world regions over the 500 year period, 1510-2010. By our estimation, this comprises 95% of all-time anthropogenic releases. Globally, 1.47 Tg of Hg were released in this period, 23% directly to the atmosphere and 77% to land and water bodies. Cumulative releases have been largest in Europe (427 Gg) and North America (413 Gg). In some world regions (Africa/Middle East and Oceania), almost all (>99%) of the Hg is relatively recent (emitted since 1850), whereas in South America it is mostly of older vintage (63% emitted before 1850). Asia was the greatest-emitting region in 2010, while releases in Europe and North America have declined since the 1970s, as recognition of the risks posed by Hg have led to its phase-out in commercial usage. The continued use of Hg in artisanal and small-scale gold mining means that the Africa/Middle East region is now a major contributor. We estimate that 72% of cumulative Hg emissions to air has been in the form of elemental mercury (Hg0), which has a long lifetime in the atmosphere and can therefore be transported long distances. Our results show that 83% of the total Hg has been released to local water bodies, onto land, or quickly deposited from the air in divalent (HgII) form. Regionally, this value ranges from 77% in Africa/Middle East and Oceania to 89% in South America. Results from global biogeochemical modeling indicate improved agreement of the refined emission estimates in this study with archival records of Hg accumulation in estuarine and deep ocean sediment.
AB - When released to the biosphere, mercury (Hg) is very mobile and can take millennia to be returned to a secure, long-term repository. Understanding where and when Hg was released as a result of human activities allows better quantification of present-day reemissions and future trajectories of environmental concentrations. In this work, we estimate the time-varying releases of Hg in seven world regions over the 500 year period, 1510-2010. By our estimation, this comprises 95% of all-time anthropogenic releases. Globally, 1.47 Tg of Hg were released in this period, 23% directly to the atmosphere and 77% to land and water bodies. Cumulative releases have been largest in Europe (427 Gg) and North America (413 Gg). In some world regions (Africa/Middle East and Oceania), almost all (>99%) of the Hg is relatively recent (emitted since 1850), whereas in South America it is mostly of older vintage (63% emitted before 1850). Asia was the greatest-emitting region in 2010, while releases in Europe and North America have declined since the 1970s, as recognition of the risks posed by Hg have led to its phase-out in commercial usage. The continued use of Hg in artisanal and small-scale gold mining means that the Africa/Middle East region is now a major contributor. We estimate that 72% of cumulative Hg emissions to air has been in the form of elemental mercury (Hg0), which has a long lifetime in the atmosphere and can therefore be transported long distances. Our results show that 83% of the total Hg has been released to local water bodies, onto land, or quickly deposited from the air in divalent (HgII) form. Regionally, this value ranges from 77% in Africa/Middle East and Oceania to 89% in South America. Results from global biogeochemical modeling indicate improved agreement of the refined emission estimates in this study with archival records of Hg accumulation in estuarine and deep ocean sediment.
KW - global budget
KW - historical releases
KW - mercury
KW - regional pollution
UR - http://www.scopus.com/inward/record.url?scp=85072713228&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85072713228&partnerID=8YFLogxK
U2 - 10.1088/1748-9326/ab281f
DO - 10.1088/1748-9326/ab281f
M3 - Article
AN - SCOPUS:85072713228
SN - 1748-9318
VL - 14
JO - Environmental Research Letters
JF - Environmental Research Letters
IS - 8
M1 - 084004
ER -