Fitting an immersed submanifold to data via Sussmann's orbit theorem

Joshua Hanson, Maxim Raginsky

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper describes an approach for fitting an immersed submanifold of a finite-dimensional Euclidean space to random samples. The reconstruction mapping from the ambient space to the desired submanifold is implemented as a composition of an encoder that maps each point to a tuple of (positive or negative) times and a decoder given by a composition of flows along finitely many vector fields starting from a fixed initial point. The encoder supplies the times for the flows. The encoder-decoder map is obtained by empirical risk minimization, and a high-probability bound is given on the excess risk relative to the minimum expected reconstruction error over a given class of encoder-decoder maps. The proposed approach makes fundamental use of Sussmann's orbit theorem, which guarantees that the image of the reconstruction map is indeed contained in an immersed submanifold.

Original languageEnglish (US)
Title of host publication2022 IEEE 61st Conference on Decision and Control, CDC 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5323-5328
Number of pages6
ISBN (Electronic)9781665467612
DOIs
StatePublished - 2022
Event61st IEEE Conference on Decision and Control, CDC 2022 - Cancun, Mexico
Duration: Dec 6 2022Dec 9 2022

Publication series

NameProceedings of the IEEE Conference on Decision and Control
Volume2022-December
ISSN (Print)0743-1546
ISSN (Electronic)2576-2370

Conference

Conference61st IEEE Conference on Decision and Control, CDC 2022
Country/TerritoryMexico
CityCancun
Period12/6/2212/9/22

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Modeling and Simulation
  • Control and Optimization

Fingerprint

Dive into the research topics of 'Fitting an immersed submanifold to data via Sussmann's orbit theorem'. Together they form a unique fingerprint.

Cite this