TY - JOUR
T1 - First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way
AU - The Event Horizon Telescope Collaboration
AU - Akiyama, Kazunori
AU - Alberdi, Antxon
AU - Alef, Walter
AU - Algaba, Juan Carlos
AU - Anantua, Richard
AU - Azulay, Rebecca
AU - Asada, Keiichi
AU - Bach, Uwe
AU - Baczko, Anne Kathrin
AU - Ball, David
AU - Baloković, Mislav
AU - Barrett, John
AU - Bauböck, Michi
AU - Benson, Bradford A.
AU - Bintley, Dan
AU - Blackburn, Lindy
AU - Blundell, Raymond
AU - Bouman, Katherine L.
AU - Bower, Geoffrey C.
AU - Boyce, Hope
AU - Bremer, Michael
AU - Brinkerink, Christiaan D.
AU - Brissenden, Roger
AU - Britzen, Silke
AU - Broderick, Avery E.
AU - Broguiere, Dominique
AU - Bronzwaer, Thomas
AU - Bustamante, Sandra
AU - Byun, Do Young
AU - Carlstrom, John E.
AU - Ceccobello, Chiara
AU - Chael, Andrew
AU - Chan, Chi Kwan
AU - Chatterjee, Koushik
AU - Chatterjee, Shami
AU - Chen, Ming Tang
AU - Chen, Yongjun
AU - Cheng, Xiaopeng
AU - Cho, Ilje
AU - Christian, Pierre
AU - Conroy, Nicholas S.
AU - Conway, John E.
AU - Cordes, James M.
AU - Crawford, Thomas M.
AU - Crew, Geoffrey B.
AU - Cruz-Osorio, Alejandro
AU - Cui, Yuzhu
AU - Davelaar, Jordy
AU - Gammie, Charles F.
AU - Turk, Matthew
N1 - Publisher Copyright:
© 2022. The Author(s). Published by the American Astronomical Society.
PY - 2022/5/1
Y1 - 2022/5/1
N2 - We present the first Event Horizon Telescope (EHT) observations of Sagittarius A* (Sgr A*), the Galactic center source associated with a supermassive black hole. These observations were conducted in 2017 using a global interferometric array of eight telescopes operating at a wavelength of λ = 1.3 mm. The EHT data resolve a compact emission region with intrahour variability. A variety of imaging and modeling analyses all support an image that is dominated by a bright, thick ring with a diameter of 51.8 ± 2.3 μas (68% credible interval). The ring has modest azimuthal brightness asymmetry and a comparatively dim interior. Using a large suite of numerical simulations, we demonstrate that the EHT images of Sgr A* are consistent with the expected appearance of a Kerr black hole with mass ∼4 × 106 M☉, which is inferred to exist at this location based on previous infrared observations of individual stellar orbits, as well as maser proper-motion studies. Our model comparisons disfavor scenarios where the black hole is viewed at high inclination (i > 50°), as well as nonspinning black holes and those with retrograde accretion disks. Our results provide direct evidence for the presence of a supermassive black hole at the center of the Milky Way, and for the first time we connect the predictions from dynamical measurements of stellar orbits on scales of 103-105 gravitational radii to event-horizon-scale images and variability. Furthermore, a comparison with the EHT results for the supermassive black hole M87* shows consistency with the predictions of general relativity spanning over three orders of magnitude in central mass.
AB - We present the first Event Horizon Telescope (EHT) observations of Sagittarius A* (Sgr A*), the Galactic center source associated with a supermassive black hole. These observations were conducted in 2017 using a global interferometric array of eight telescopes operating at a wavelength of λ = 1.3 mm. The EHT data resolve a compact emission region with intrahour variability. A variety of imaging and modeling analyses all support an image that is dominated by a bright, thick ring with a diameter of 51.8 ± 2.3 μas (68% credible interval). The ring has modest azimuthal brightness asymmetry and a comparatively dim interior. Using a large suite of numerical simulations, we demonstrate that the EHT images of Sgr A* are consistent with the expected appearance of a Kerr black hole with mass ∼4 × 106 M☉, which is inferred to exist at this location based on previous infrared observations of individual stellar orbits, as well as maser proper-motion studies. Our model comparisons disfavor scenarios where the black hole is viewed at high inclination (i > 50°), as well as nonspinning black holes and those with retrograde accretion disks. Our results provide direct evidence for the presence of a supermassive black hole at the center of the Milky Way, and for the first time we connect the predictions from dynamical measurements of stellar orbits on scales of 103-105 gravitational radii to event-horizon-scale images and variability. Furthermore, a comparison with the EHT results for the supermassive black hole M87* shows consistency with the predictions of general relativity spanning over three orders of magnitude in central mass.
UR - http://www.scopus.com/inward/record.url?scp=85131912575&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85131912575&partnerID=8YFLogxK
U2 - 10.3847/2041-8213/ac6674
DO - 10.3847/2041-8213/ac6674
M3 - Article
AN - SCOPUS:85131912575
SN - 2041-8205
VL - 930
JO - Astrophysical Journal Letters
JF - Astrophysical Journal Letters
IS - 2
M1 - L12
ER -