First-principle SiPM Characterization to Enable Radiation Detection in Harsh Environments

Jacob Fritchie, Ming Fang, Jon Balajthy, Melinda Sweany, Thomas Weber, Angela Di Fulvio

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper reports the experimental comparison of two silicon photomultipliers (SiPMs): the MicroFJ-30035 by ONSemi and the ASD-NUV3S-P by AdvanSiD, in terms of gain, dark count rate, and crosstalk probability. SiPMs are solid state photon detectors that enable high sensitivity light readout. They have low-voltage power requirements, small form factor, and are durable. For these reasons, they are being considered as replacements for vacuum photomultiplier tubes in some applications. However, their performance relies on several parameters, which need to be carefully characterized to enable their high-fidelity simulation and SiPM-based design of devices capable to operate in harsh environments. The parameters tend to vary between manufacturers and processing technologies. In this work, we have compared the MicroFJ and ASD SiPMs in terms of gain, dark count rate, and crosstalk probability. We found that the dark count rate of the MicroFJ was 16% higher than the ASD. Also, the gain of the MicroFJ is 3.5 times higher than the ASD. Finally, the crosstalk probability of the ASD 1.96 times higher than the MicroFJ. Our findings are in good agreement with manufacturer reported values.

Original languageEnglish (US)
Title of host publication2022 IEEE NSS/MIC RTSD - IEEE Nuclear Science Symposium, Medical Imaging Conference and Room Temperature Semiconductor Detector Conference
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781665488723
DOIs
StatePublished - 2022
Event2022 IEEE Nuclear Science Symposium, Medical Imaging Conference, and Room Temperature Semiconductor Detector Conference, IEEE NSS MIC RTSD 2022 - Milano, Italy
Duration: Nov 5 2022Nov 12 2022

Publication series

Name2022 IEEE NSS/MIC RTSD - IEEE Nuclear Science Symposium, Medical Imaging Conference and Room Temperature Semiconductor Detector Conference

Conference

Conference2022 IEEE Nuclear Science Symposium, Medical Imaging Conference, and Room Temperature Semiconductor Detector Conference, IEEE NSS MIC RTSD 2022
Country/TerritoryItaly
CityMilano
Period11/5/2211/12/22

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Radiology Nuclear Medicine and imaging
  • Instrumentation
  • Nuclear and High Energy Physics

Fingerprint

Dive into the research topics of 'First-principle SiPM Characterization to Enable Radiation Detection in Harsh Environments'. Together they form a unique fingerprint.

Cite this