Finite-temperature many-body perturbation theory for electrons: Algebraic recursive definitions, second-quantized derivation, linked-diagram theorem, general-order algorithms, and grand canonical and canonical ensembles

Research output: Contribution to journalArticlepeer-review

Abstract

A comprehensive and detailed account is presented for the finite-temperature many-body perturbation theory for electrons that expands in power series all thermodynamic functions on an equal footing. Algebraic recursions in the style of the Rayleigh-Schrödinger perturbation theory are derived for the grand potential, chemical potential, internal energy, and entropy in the grand canonical ensemble and for the Helmholtz energy, internal energy, and entropy in the canonical ensemble, leading to their sum-over-states analytical formulas at any arbitrary order. For the grand canonical ensemble, these sum-over-states formulas are systematically transformed to sum-over-orbitals reduced analytical formulas by the quantum-field-theoretical techniques of normal-ordered second quantization and Feynman diagrams extended to finite temperature. It is found that the perturbation corrections to energies entering the recursions have to be treated as a nondiagonal matrix, whose off-diagonal elements are generally nonzero within a subspace spanned by degenerate Slater determinants. They give rise to a unique set of linked diagrams—renormalization diagrams—whose resolvent lines are displaced upward, which are distinct from the well-known anomalous diagrams of which one or more resolvent lines are erased. A linked-diagram theorem is introduced that proves the size-consistency of the finite-temperature many-body perturbation theory at any order. General-order algorithms implementing the recursions establish the convergence of the perturbation series toward the finite-temperature full-configuration-interaction limit unless the series diverges. The normal-ordered Hamiltonian at finite temperature sheds light on the relationship between the finite-temperature Hartree-Fock and first-order many-body perturbation theories.

Original languageEnglish (US)
Article number094106
JournalJournal of Chemical Physics
Volume155
Issue number9
DOIs
StatePublished - Sep 7 2021

ASJC Scopus subject areas

  • General Physics and Astronomy
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Finite-temperature many-body perturbation theory for electrons: Algebraic recursive definitions, second-quantized derivation, linked-diagram theorem, general-order algorithms, and grand canonical and canonical ensembles'. Together they form a unique fingerprint.

Cite this