Abstract
We consider a discrete-time dynamical system over a discrete state-space, which evolves according to a structured Markov model called Bernoulli autoregressive (BAR) model. Our goal is to obtain sample complexity bounds for the problem of estimating the parameters of this model using an indirect maximum likelihood estimator. Our sample complexity bounds exploit the structure of the BAR model and are established using concentration inequalities for random matrices and Lipschitz functions.
Original language | English (US) |
---|---|
Pages (from-to) | 6345-6352 |
Number of pages | 8 |
Journal | IEEE Transactions on Automatic Control |
Volume | 68 |
Issue number | 10 |
DOIs | |
State | Published - Oct 1 2023 |
Keywords
- Discrete state-space dynamical systems
- Markov chains
- identification
- sample complexity
ASJC Scopus subject areas
- Electrical and Electronic Engineering
- Control and Systems Engineering
- Computer Science Applications