Fine-grained Control of Generative Data Augmentation in IoT Sensing

Tianshi Wang, Qikai Yang, Ruijie Wang, Dachun Sun, Jinyang Li, Yizhuo Chen, Yigong Hu, Chaoqi Yang, Tomoyoshi Kimura, Denizhan Kara, Tarek Abdelzaher

Research output: Contribution to journalConference articlepeer-review

Abstract

Internet of Things (IoT) sensing models often suffer from overfitting due to data distribution shifts between training dataset and real-world scenarios. To address this, data augmentation techniques have been adopted to enhance model robustness by bolstering the diversity of synthetic samples within a defined vicinity of existing samples. This paper introduces a novel paradigm of data augmentation for IoT sensing signals by adding fine-grained control to generative models. We define a metric space with statistical metrics that capture the essential features of the short-time Fourier transformed (STFT) spectrograms of IoT sensing signals. These metrics serve as strong conditions for a generative model, enabling us to tailor the spectrogram characteristics in the time-frequency domain according to specific application needs. Furthermore, we propose a set of data augmentation techniques within this metric space to create new data samples. Our method is evaluated across various generative models, datasets, and downstream IoT sensing models. The results demonstrate that our approach surpasses the conventional transformation-based data augmentation techniques and prior generative data augmentation models.

Original languageEnglish (US)
JournalAdvances in Neural Information Processing Systems
Volume37
StatePublished - 2024
Event38th Conference on Neural Information Processing Systems, NeurIPS 2024 - Vancouver, Canada
Duration: Dec 9 2024Dec 15 2024

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Fine-grained Control of Generative Data Augmentation in IoT Sensing'. Together they form a unique fingerprint.

Cite this