@inproceedings{ba900f505c9e4670aa43d8317efe1464,
title = "Fine-Grained Chemical Entity Typing with Multimodal Knowledge Representation",
abstract = "Automated knowledge discovery from trending chemical literature is essential for more efficient biomedical research. How to extract detailed knowledge about chemical reactions from the core chemistry literature is a new emerging challenge that has not been well studied. In this paper, we study the new problem of fine-grained chemical entity typing, which poses interesting new challenges especially because of the complex name mentions frequently occurring in chemistry literature and graphic representation of entities. We introduce a new benchmark data set (CHEMET) to facilitate the study of the new task and propose a novel multi-modal representation learning framework to solve the problem of fine-grained chemical entity typing by leveraging external resources with chemical structures and using cross-modal attention to learn effective representation of text in the chemistry domain. Experiment results show that the proposed framework outperforms multiple state-of-the-art methods.",
keywords = "Chemistry, Deep Learning, Fine-Grained Entity Typing, Information Extraction, Multimodal Representation",
author = "Chenkai Sun and Weijiang Li and Jinfeng Xiao and Parulian, {Nikolaus Nova} and Chengxiang Zhai and Heng Ji",
note = "Funding Information: This research is based upon work supported by the Molecule Maker Lab Institute: An AI Research Institutes program supported by NSF under Award No. 2019897 and NSF No. 2034562. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright annotation therein Publisher Copyright: {\textcopyright} 2021 IEEE.; 2021 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2021 ; Conference date: 09-12-2021 Through 12-12-2021",
year = "2021",
doi = "10.1109/BIBM52615.2021.9669360",
language = "English (US)",
series = "Proceedings - 2021 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2021",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "1984--1991",
editor = "Yufei Huang and Lukasz Kurgan and Feng Luo and Hu, {Xiaohua Tony} and Yidong Chen and Edward Dougherty and Andrzej Kloczkowski and Yaohang Li",
booktitle = "Proceedings - 2021 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2021",
address = "United States",
}