Finding Spoken Identifications: Using GPT-4 Annotation For An Efficient And Fast Dataset Creation Pipeline

Maliha Jahan, Helin Wang, Thomas Thebaud, Yinglun Sun, Giang Le, Zsuzsanna Fagyal, Odette Scharenborg, Mark Hasegawa-Johnson, Laureano Moro-Velazquez, Najim Dehak

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The growing emphasis on fairness in speech-processing tasks requires datasets with speakers from diverse subgroups that allow training and evaluating fair speech technology systems. However, creating such datasets through manual annotation can be costly. To address this challenge, we present a semi-automated dataset creation pipeline that leverages large language models. We use this pipeline to generate a dataset of speakers identifying themself or another speaker as belonging to a particular race, ethnicity, or national origin group. We use OpenaAI's GPT-4 to perform two complex annotation tasks- separating files relevant to our intended dataset from the irrelevant ones (filtering) and finding and extracting information on identifications within a transcript (tagging). By evaluating GPT-4's performance using human annotations as ground truths, we show that it can reduce resources required by dataset annotation while barely losing any important information. For the filtering task, GPT-4 had a very low miss rate of 6.93%. GPT-4's tagging performance showed a trade-off between precision and recall, where the latter got as high as 97%, but precision never exceeded 45%. Our approach reduces the time required for the filtering and tagging tasks by 95% and 80%, respectively. We also present an in-depth error analysis of GPT-4's performance.

Original languageEnglish (US)
Title of host publication2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024 - Main Conference Proceedings
EditorsNicoletta Calzolari, Min-Yen Kan, Veronique Hoste, Alessandro Lenci, Sakriani Sakti, Nianwen Xue
PublisherEuropean Language Resources Association (ELRA)
Pages7296-7306
Number of pages11
ISBN (Electronic)9782493814104
StatePublished - 2024
EventJoint 30th International Conference on Computational Linguistics and 14th International Conference on Language Resources and Evaluation, LREC-COLING 2024 - Hybrid, Torino, Italy
Duration: May 20 2024May 25 2024

Publication series

Name2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024 - Main Conference Proceedings

Conference

ConferenceJoint 30th International Conference on Computational Linguistics and 14th International Conference on Language Resources and Evaluation, LREC-COLING 2024
Country/TerritoryItaly
CityHybrid, Torino
Period5/20/245/25/24

Keywords

  • Annotation
  • ChatGPT
  • Dataset
  • Fairness
  • GPT-4
  • Large Language Model
  • OpenAI
  • Prompt
  • Self-identification

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computational Theory and Mathematics
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Finding Spoken Identifications: Using GPT-4 Annotation For An Efficient And Fast Dataset Creation Pipeline'. Together they form a unique fingerprint.

Cite this