Find your way by observing the sun and other semantic cues

Wei Chiu Ma, Shenlong Wang, Marcus A. Brubaker, Sanja Fidler, Raquel Urtasun

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper we present a robust, efficient and affordable approach to self-localization which requires neither GPS nor knowledge about the appearance of the world. Towards this goal, we utilize freely available cartographic maps and derive a probabilistic model that exploits semantic cues in the form of sun direction, presence of an intersection, road type, speed limit and ego-car trajectory to produce very reliable localization results. Our experimental evaluation shows that our approach can localize much faster (in terms of driving time) with less computation and more robustly than competing approaches, which ignore semantic information.

Original languageEnglish (US)
Title of host publicationICRA 2017 - IEEE International Conference on Robotics and Automation
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6292-6299
Number of pages8
ISBN (Electronic)9781509046331
DOIs
StatePublished - Jul 21 2017
Externally publishedYes
Event2017 IEEE International Conference on Robotics and Automation, ICRA 2017 - Singapore, Singapore
Duration: May 29 2017Jun 3 2017

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Other

Other2017 IEEE International Conference on Robotics and Automation, ICRA 2017
Country/TerritorySingapore
CitySingapore
Period5/29/176/3/17

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Find your way by observing the sun and other semantic cues'. Together they form a unique fingerprint.

Cite this