Filtered Rayleigh scattering thermometry in a premixed sooting flame

Sean P. Kearney, Thomas W. Grasser, Steven J. Beresh

Research output: Contribution to conferencePaperpeer-review

Abstract

Filtered Rayleigh Scattering (FRS) is demonstrated in a premixed, sooting ethylene-air flame. In sooting flames, traditional laser-based temperature-imaging techniques such linear (unfiltered) Rayleigh scatting (LRS) and planar laser-induced fluorescence (PLIF) are rendered intractable due to intense elastic scattering interferences from in-flame soot. FRS partially overcomes this limitation by utilizing a molecular iodine filter in conjunction with an injection-seeded Nd:YAG laser, where the seeded laser output is tuned to line center of a strong iodine absorption transition. A significant portion of the Doppler-broadened molecular Rayleigh signal is then passed while intense soot scattering at the laser line is strongly absorbed. In this paper, we demonstrate the feasibility of FRS for sooting flame thermometry using a premixed, ethylene-air flat flame. We present filtered and unfiltered laser light-scattering images, FRS temperature data, and laser-induced incandescence (LIT) measurements of soot volume fraction for fuel-air equivalence ratios of φ = 2.19 and 2.24. FRS-measured product temperatures for these flames are nominally 1500 K. The FRS temperature and image data are discussed in the context of the soot LII results and a preliminary estimate of the upper sooting limit for our FRS system of order 0.1 ppm volume fraction is obtained.

Original languageEnglish (US)
Pages231-234
Number of pages4
DOIs
StatePublished - 2004
Externally publishedYes
EventProceedings of the ASME Heat Transfer/Fluids Engineering Summer Conference 2004, HT/FED 2004 - Charlotte, NC, United States
Duration: Jul 11 2004Jul 15 2004

Other

OtherProceedings of the ASME Heat Transfer/Fluids Engineering Summer Conference 2004, HT/FED 2004
Country/TerritoryUnited States
CityCharlotte, NC
Period7/11/047/15/04

ASJC Scopus subject areas

  • General Engineering

Fingerprint

Dive into the research topics of 'Filtered Rayleigh scattering thermometry in a premixed sooting flame'. Together they form a unique fingerprint.

Cite this