TY - GEN
T1 - Few-Shot Human Motion Transfer by Personalized Geometry and Texture Modeling
AU - Huang, Zhichao
AU - Han, Xintong
AU - Xu, Jia
AU - Zhang, Tong
N1 - Publisher Copyright:
© 2021 IEEE
PY - 2021
Y1 - 2021
N2 - We present a new method for few-shot human motion transfer that achieves realistic human image generation with only a small number of appearance inputs. Despite recent advances in single person motion transfer, prior methods often require a large number of training images and take long training time. One promising direction is to perform few-shot human motion transfer, which only needs a few of source images for appearance transfer. However, it is particularly challenging to obtain satisfactory transfer results. In this paper, we address this issue by rendering a human texture map to a surface geometry (represented as a UV map), which is personalized to the source person. Our geometry generator combines the shape information from source images, and the pose information from 2D keypoints to synthesize the personalized UV map. A texture generator then generates the texture map conditioned on the texture of source images to fill out invisible parts. Furthermore, we may fine-tune the texture map on the manifold of the texture generator from a few source images at the test time, which improves the quality of the texture map without over-fitting or artifacts. Extensive experiments show the proposed method outperforms state-of-the-art methods both qualitatively and quantitatively. Our code is available at https://github.com/HuangZhiChao95/FewShotMotionTransfer.
AB - We present a new method for few-shot human motion transfer that achieves realistic human image generation with only a small number of appearance inputs. Despite recent advances in single person motion transfer, prior methods often require a large number of training images and take long training time. One promising direction is to perform few-shot human motion transfer, which only needs a few of source images for appearance transfer. However, it is particularly challenging to obtain satisfactory transfer results. In this paper, we address this issue by rendering a human texture map to a surface geometry (represented as a UV map), which is personalized to the source person. Our geometry generator combines the shape information from source images, and the pose information from 2D keypoints to synthesize the personalized UV map. A texture generator then generates the texture map conditioned on the texture of source images to fill out invisible parts. Furthermore, we may fine-tune the texture map on the manifold of the texture generator from a few source images at the test time, which improves the quality of the texture map without over-fitting or artifacts. Extensive experiments show the proposed method outperforms state-of-the-art methods both qualitatively and quantitatively. Our code is available at https://github.com/HuangZhiChao95/FewShotMotionTransfer.
UR - http://www.scopus.com/inward/record.url?scp=85123218012&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85123218012&partnerID=8YFLogxK
U2 - 10.1109/CVPR46437.2021.00233
DO - 10.1109/CVPR46437.2021.00233
M3 - Conference contribution
AN - SCOPUS:85123218012
T3 - Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
SP - 2297
EP - 2306
BT - Proceedings - 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021
PB - IEEE Computer Society
T2 - 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021
Y2 - 19 June 2021 through 25 June 2021
ER -