Few-Shot Hash Learning for Image Retrieval

Liangke Gui, Yu Xiong Wang, Martial Hebert

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Current approaches to hash based semantic image retrieval assume a set of pre-defined categories and rely on supervised learning from a large number of annotated samples. The need for labeled samples limits their applicability in scenarios in which a user provides at query time a small set of training images defining a customized novel category. This paper addresses the problem of few-shot hash learning, in the spirit of one-shot learning in image recognition and classification and early work on locality sensitive hashing. More precisely, our approach is based on the insight that universal hash functions can be learned off-line from unlabeled data because of the information implicit in the density structure of a discriminative feature space. We can then select a task-specific combination of hash codes for a novel category from a few labeled samples. The resulting unsupervised generic hashing (UGH) significantly outperforms current supervised and unsupervised hashing approaches on image retrieval tasks with small training samples.

Original languageEnglish (US)
Title of host publicationProceedings - 2017 IEEE International Conference on Computer Vision Workshops, ICCVW 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1228-1237
Number of pages10
ISBN (Electronic)9781538610343
DOIs
StatePublished - Jul 1 2017
Externally publishedYes
Event16th IEEE International Conference on Computer Vision Workshops, ICCVW 2017 - Venice, Italy
Duration: Oct 22 2017Oct 29 2017

Publication series

NameProceedings - 2017 IEEE International Conference on Computer Vision Workshops, ICCVW 2017
Volume2018-January

Conference

Conference16th IEEE International Conference on Computer Vision Workshops, ICCVW 2017
Country/TerritoryItaly
CityVenice
Period10/22/1710/29/17

ASJC Scopus subject areas

  • Computer Science Applications
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Few-Shot Hash Learning for Image Retrieval'. Together they form a unique fingerprint.

Cite this