Feedback control of many differential-drive robots with uniform control inputs

Aaron Becker, Cem Onyuksel, Timothy Wolfe Bretl

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper, we derive a globally asymptotically stabilizing feedback control policy for a collection of differential-drive robots under the constraint that every robot receives exactly the same control inputs. We begin by assuming that each robot has a slightly different wheel size, which scales its forward speed and turning rate by a constant that can be found by offline or online calibration. The resulting feedback policy is easy to implement, is robust to standard models of noise, and scales to an arbitrary number (even a continuous ensemble) of robots. We validate this policy with hardware experiments, which additionally reveal that our feedback policy still works when the wheel sizes are unknown and even when the wheel sizes are all approximately identical. These results have possible future application to control of micro- and nano-scale robotic systems, which are often subject to similar constraints.

Original languageEnglish (US)
Title of host publication2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2012
Pages2256-2262
Number of pages7
DOIs
StatePublished - 2012
Event25th IEEE/RSJ International Conference on Robotics and Intelligent Systems, IROS 2012 - Vilamoura, Algarve, Portugal
Duration: Oct 7 2012Oct 12 2012

Other

Other25th IEEE/RSJ International Conference on Robotics and Intelligent Systems, IROS 2012
CountryPortugal
CityVilamoura, Algarve
Period10/7/1210/12/12

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Software
  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint Dive into the research topics of 'Feedback control of many differential-drive robots with uniform control inputs'. Together they form a unique fingerprint.

Cite this