Federated tensor factorization for computational phenotyping

Yejin Kim, Jimeng Sun, Hwanjo Yu, Xiaoqian Jiang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Tensor factorization models offer an effective approach to convert massive electronic health records into meaningful clinical concepts (phenotypes) for data analysis. These models need a large amount of diverse samples to avoid population bias. An open challenge is how to derive phenotypes jointly across multiple hospitals, in which direct patient-level data sharing is not possible (e.g., due to institutional policies). In this paper, we developed a novel solution to enable federated tensor factorization for computational phenotyping without sharing patient-level data. We developed secure data harmonization and federated computation procedures based on alternating direction method of multipliers (ADMM). Using this method, the multiple hospitals iteratively update tensors and transfer secure summarized information to a central server, and the server aggregates the information to generate phenotypes. We demonstrated with real medical datasets that our method resembles the centralized training model (based on combined datasets) in terms of accuracy and phenotypes discovery while respecting privacy.

Original languageEnglish (US)
Title of host publicationKDD 2017 - Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages887-895
Number of pages9
ISBN (Electronic)9781450348874
DOIs
StatePublished - Aug 13 2017
Externally publishedYes
Event23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2017 - Halifax, Canada
Duration: Aug 13 2017Aug 17 2017

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
VolumePart F129685

Other

Other23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2017
Country/TerritoryCanada
CityHalifax
Period8/13/178/17/17

Keywords

  • ADMM
  • Federated approach
  • Phenotype

ASJC Scopus subject areas

  • Software
  • Information Systems

Fingerprint

Dive into the research topics of 'Federated tensor factorization for computational phenotyping'. Together they form a unique fingerprint.

Cite this