Abstract

This paper introduces a universal federated learning framework that enables over-the-air computation via digital communications, using a new joint source-channel coding scheme. Without relying on channel state information at devices, this scheme employs lattice codes to both quantize model parameters and exploit interference from the devices. A novel two-layer receiver structure at the server is designed to reliably decode an integer combination of the quantized model parameters as a lattice point for the purpose of aggregation. Numerical experiments validate the effectiveness of the proposed scheme. Even with the challenges posed by channel conditions and device heterogeneity, the proposed scheme markedly surpasses other over-the-air FL strategies.

Original languageEnglish (US)
Title of host publication2024 IEEE International Symposium on Information Theory, ISIT 2024 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1623-1628
Number of pages6
ISBN (Electronic)9798350382846
DOIs
StatePublished - 2024
Event2024 IEEE International Symposium on Information Theory, ISIT 2024 - Athens, Greece
Duration: Jul 7 2024Jul 12 2024

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
ISSN (Print)2157-8095

Conference

Conference2024 IEEE International Symposium on Information Theory, ISIT 2024
Country/TerritoryGreece
CityAthens
Period7/7/247/12/24

Keywords

  • Federated learning
  • digital communications
  • joint source-channel coding
  • lattice codes
  • over-the-air computation

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Information Systems
  • Modeling and Simulation
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Federated Learning via Lattice Joint Source-Channel Coding'. Together they form a unique fingerprint.

Cite this