Abstract
Centralized learning requires data to be aggregated at a central server, which poses significant challenges in terms of data privacy and bandwidth consumption. Federated learning presents a compelling alternative, however, vanilla federated learning methods deployed in robotics aim to learn a single global model across robots that works ideally for all. But in practice one model may not be well suited for robots deployed in various environments. This letter proposes Federated-EmbedCluster (Fed-EC), a clustering-based federated learning framework that is deployed with vision based autonomous robot navigation in diverse outdoor environments. The framework addresses the key federated learning challenge of deteriorating model performance of a single global model due to the presence of non-IID data across real-world robots. Extensive real-world experiments validate that Fed-EC reduces the communication size by 23x for each robot while matching the performance of centralized learning for goal-oriented navigation and outperforms local learning. Fed-EC can transfer previously learnt models to new robots that join the cluster.
Original language | English (US) |
---|---|
Pages (from-to) | 11841-11848 |
Number of pages | 8 |
Journal | IEEE Robotics and Automation Letters |
Volume | 9 |
Issue number | 12 |
DOIs | |
State | Published - 2024 |
Keywords
- Distributed robot systems
- federated learning
- robotics in under-resourced settings
- vision-based navigation
ASJC Scopus subject areas
- Control and Systems Engineering
- Biomedical Engineering
- Human-Computer Interaction
- Mechanical Engineering
- Computer Vision and Pattern Recognition
- Computer Science Applications
- Control and Optimization
- Artificial Intelligence