Faster Directional Convergence of Linear Neural Networks under Spherically Symmetric Data

Dachao Lin, Ruoyu Sun, Zhihua Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper, we study gradient methods for training deep linear neural networks with binary cross-entropy loss. In particular, we show global directional convergence guarantees from a polynomial rate to a linear rate for (deep) linear networks with spherically symmetric data distribution, which can be viewed as a specific zero-margin dataset. Our results do not require the assumptions in other works such as small initial loss, presumed convergence of weight direction, or overparameterization. We also characterize our findings in experiments.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 34 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021
EditorsMarc'Aurelio Ranzato, Alina Beygelzimer, Yann Dauphin, Percy S. Liang, Jenn Wortman Vaughan
PublisherNeural information processing systems foundation
Pages4647-4660
Number of pages14
ISBN (Electronic)9781713845393
StatePublished - 2021
Event35th Conference on Neural Information Processing Systems, NeurIPS 2021 - Virtual, Online
Duration: Dec 6 2021Dec 14 2021

Publication series

NameAdvances in Neural Information Processing Systems
Volume6
ISSN (Print)1049-5258

Conference

Conference35th Conference on Neural Information Processing Systems, NeurIPS 2021
CityVirtual, Online
Period12/6/2112/14/21

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Faster Directional Convergence of Linear Neural Networks under Spherically Symmetric Data'. Together they form a unique fingerprint.

Cite this