TY - GEN
T1 - Fast LP-based approximations for geometric packing and covering problems
AU - Chekuri, Chandra
AU - Har-Peled, Sariel
AU - Quanrud, Kent
N1 - Publisher Copyright:
Copyright © 2020 by SIAM
PY - 2020
Y1 - 2020
N2 - We derive fast approximation schemes for LP relaxations of several well-studied geometric optimization problems that include packing, covering, and mixed packing and covering constraints. Previous work in computational geometry concentrated mainly on the rounding stage to prove approximation bounds, assuming that the underlying LPs can be solved efficiently. This work demonstrates that many of those results can be made to run in nearly linear time. In contrast to prior work on this topic our algorithms handle weights and capacities, side constraints, and also apply to mixed packing and covering problems, in a unified fashion. Our framework relies crucially on the properties of a randomized MWU algorithm of [41]; we demonstrate that it is well-suited for range spaces that admit efficient approximate dynamic data structures for emptiness oracles. Our framework cleanly separates the MWU algorithm for solving the LP from the key geometric data structure primitives, and this enables us to handle side constraints in a simple way. Combined with rounding algorithms that can also be implemented efficiently, we obtain the first near-linear constant factor approximation algorithms for several problems.
AB - We derive fast approximation schemes for LP relaxations of several well-studied geometric optimization problems that include packing, covering, and mixed packing and covering constraints. Previous work in computational geometry concentrated mainly on the rounding stage to prove approximation bounds, assuming that the underlying LPs can be solved efficiently. This work demonstrates that many of those results can be made to run in nearly linear time. In contrast to prior work on this topic our algorithms handle weights and capacities, side constraints, and also apply to mixed packing and covering problems, in a unified fashion. Our framework relies crucially on the properties of a randomized MWU algorithm of [41]; we demonstrate that it is well-suited for range spaces that admit efficient approximate dynamic data structures for emptiness oracles. Our framework cleanly separates the MWU algorithm for solving the LP from the key geometric data structure primitives, and this enables us to handle side constraints in a simple way. Combined with rounding algorithms that can also be implemented efficiently, we obtain the first near-linear constant factor approximation algorithms for several problems.
UR - http://www.scopus.com/inward/record.url?scp=85084059936&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85084059936&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85084059936
T3 - Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms
SP - 1019
EP - 1038
BT - 31st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2020
A2 - Chawla, Shuchi
PB - Association for Computing Machinery
T2 - 31st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2020
Y2 - 5 January 2020 through 8 January 2020
ER -