Fast learning of MNL model from general partial rankings with application to network formation modeling

Jiaqi Ma, Xingjian Zhang, Qiaozhu Mei

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Multinomial Logit (MNL) is one of the most popular discrete choice models and has been widely used to model ranking data. However, there is a long-standing technical challenge of learning MNL from many real-world ranking data: exact calculation of the MNL likelihood of partial rankings is generally intractable. In this work, we develop a scalable method for approximating the MNL likelihood of general partial rankings in polynomial time complexity. We also extend the proposed method to learn mixture of MNL. We demonstrate that the proposed methods are particularly helpful for applications to choice-based network formation modeling, where the formation of new edges in a network is viewed as individuals making choices of their friends over a candidate set. The problem of learning mixture of MNL models from partial rankings naturally arises in such applications. And the proposed methods can be used to learn MNL models from network data without the strong assumption that temporal orders of all the edge formation are available. We conduct experiments on both synthetic and real-world network data to demonstrate that the proposed methods achieve more accurate parameter estimation and better fitness of data compared to conventional methods.

Original languageEnglish (US)
Title of host publicationWSDM 2022 - Proceedings of the 15th ACM International Conference on Web Search and Data Mining
PublisherAssociation for Computing Machinery
Pages715-725
Number of pages11
ISBN (Electronic)9781450391320
DOIs
StatePublished - Feb 11 2022
Externally publishedYes
Event15th ACM International Conference on Web Search and Data Mining, WSDM 2022 - Virtual, Online, United States
Duration: Feb 21 2022Feb 25 2022

Publication series

NameWSDM 2022 - Proceedings of the 15th ACM International Conference on Web Search and Data Mining

Conference

Conference15th ACM International Conference on Web Search and Data Mining, WSDM 2022
Country/TerritoryUnited States
CityVirtual, Online
Period2/21/222/25/22

Keywords

  • Learning to rank
  • Multinomial logit model
  • Network formation modeling
  • Partial ranking
  • Plackett-luce model

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Computer Science Applications
  • Software

Fingerprint

Dive into the research topics of 'Fast learning of MNL model from general partial rankings with application to network formation modeling'. Together they form a unique fingerprint.

Cite this