TY - CHAP
T1 - Fast algorithms for computing the smallest k-enclosing disc
AU - Har-Peled, Sariel
AU - Mazumdar, Soham
PY - 2003
Y1 - 2003
N2 - We consider the problem of finding, for a given n point set P in the plane and an integer k ≤ n, the smallest circle enclosing at least k points of P. We present a randomized algorithm that computes in O (nk) expected time such a circle, improving over all previously known algorithms. Since this problem is believed to require Ω(nk) time, we present a linear time δ-approximation algorithm that outputs a circle that contains at least k points of P, and of radius less than (1 + δ)ropt(P, k), where ropt(P,k) is the radius of the minimal disk containing at least k points of P. The expected running time of this approximation algorithm is O(n + n · min (1/kδ3 log2 1/δ, k)).
AB - We consider the problem of finding, for a given n point set P in the plane and an integer k ≤ n, the smallest circle enclosing at least k points of P. We present a randomized algorithm that computes in O (nk) expected time such a circle, improving over all previously known algorithms. Since this problem is believed to require Ω(nk) time, we present a linear time δ-approximation algorithm that outputs a circle that contains at least k points of P, and of radius less than (1 + δ)ropt(P, k), where ropt(P,k) is the radius of the minimal disk containing at least k points of P. The expected running time of this approximation algorithm is O(n + n · min (1/kδ3 log2 1/δ, k)).
UR - http://www.scopus.com/inward/record.url?scp=0142183803&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0142183803&partnerID=8YFLogxK
U2 - 10.1007/978-3-540-39658-1_27
DO - 10.1007/978-3-540-39658-1_27
M3 - Chapter
AN - SCOPUS:0142183803
SN - 3540200649
SN - 9783540200642
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 278
EP - 288
BT - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
A2 - di Battista, Giuseppe
A2 - Zwick, Uri
PB - Springer
ER -