TY - GEN
T1 - Fairness-aware agnostic federated learning
AU - Du, Wei
AU - Xu, Depeng
AU - Wu, Xintao
AU - Tong, Hanghang
N1 - Publisher Copyright:
© 2021 by SIAM.
PY - 2021
Y1 - 2021
N2 - Federated learning is an emerging framework that builds centralized machine learning models with training data distributed across multiple devices. Most of the previous works about federated learning focus on the privacy protection and communication cost reduction. However, how to achieve fairness in federated learning is under-explored and challenging especially when testing data distribution is different from training distribution or even unknown. Introducing simple fairness constraints on the centralized model cannot achieve model fairness on unknown testing data. In this paper, we develop a fairness-aware agnostic federated learning framework (AgnosticFair) to deal with the challenge of unknown testing distribution. We use kernel reweighing functions to assign a reweighing value on each training sample in both loss function and fairness constraint. Therefore, the centralized model built from AgnosticFair can achieve high accuracy and fairness guarantee on unknown testing data. Moreover, the built model can be directly applied to local sites as it guarantees fairness on local data distributions. To our best knowledge, this is the first work to achieve fairness in federated learning. Experimental results on two real datasets demonstrate the effectiveness in terms of both utility and fairness under data shift scenarios.
AB - Federated learning is an emerging framework that builds centralized machine learning models with training data distributed across multiple devices. Most of the previous works about federated learning focus on the privacy protection and communication cost reduction. However, how to achieve fairness in federated learning is under-explored and challenging especially when testing data distribution is different from training distribution or even unknown. Introducing simple fairness constraints on the centralized model cannot achieve model fairness on unknown testing data. In this paper, we develop a fairness-aware agnostic federated learning framework (AgnosticFair) to deal with the challenge of unknown testing distribution. We use kernel reweighing functions to assign a reweighing value on each training sample in both loss function and fairness constraint. Therefore, the centralized model built from AgnosticFair can achieve high accuracy and fairness guarantee on unknown testing data. Moreover, the built model can be directly applied to local sites as it guarantees fairness on local data distributions. To our best knowledge, this is the first work to achieve fairness in federated learning. Experimental results on two real datasets demonstrate the effectiveness in terms of both utility and fairness under data shift scenarios.
UR - http://www.scopus.com/inward/record.url?scp=85108228254&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85108228254&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85108228254
T3 - SIAM International Conference on Data Mining, SDM 2021
SP - 181
EP - 189
BT - SIAM International Conference on Data Mining, SDM 2021
PB - Siam Society
T2 - 2021 SIAM International Conference on Data Mining, SDM 2021
Y2 - 29 April 2021 through 1 May 2021
ER -