@inproceedings{435d9a3c987b46919af271a060321e9a,
title = "Fair Regression under Sample Selection Bias",
abstract = "Recent research on fair regression focused on developing new fairness notions and approximation methods as target variables and even the sensitive attribute are continuous in the regression setting. However, all previous fair regression research assumed the training data and testing data are drawn from the same distributions. This assumption is often violated in real world due to the sample selection bias between the training and testing data. In this paper, we develop a framework for fair regression under sample selection bias when dependent variable values of a set of samples from the training data are missing as a result of another hidden process. Our framework adopts the classic Heckman model for bias correction and the Lagrange duality to achieve fairness in regression based on a variety of fairness notions. Heckman model describes the sample selection process and uses a derived variable called the Inverse Mills Ratio (IMR) to correct sample selection bias. We use fairness inequality and equality constraints to describe a variety of fairness notions and apply the Lagrange duality theory to transform the primal problem into the dual convex optimization. For the two popular fairness notions, mean difference and mean squared error difference, we derive explicit formulas without iterative optimization, and for Pearson correlation, we derive its conditions of achieving strong duality. We conduct experiments on three real-world datasets and the experimental results demonstrate the approach's effectiveness in terms of both utility and fairness metrics.",
keywords = "algorithmic fairness, regression analysis, sample selection bias",
author = "Wei Du and Xintao Wu and Hanghang Tong",
note = "Publisher Copyright: {\textcopyright} 2022 IEEE.; 2022 IEEE International Conference on Big Data, Big Data 2022 ; Conference date: 17-12-2022 Through 20-12-2022",
year = "2022",
doi = "10.1109/BigData55660.2022.10021107",
language = "English (US)",
series = "Proceedings - 2022 IEEE International Conference on Big Data, Big Data 2022",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "1435--1444",
editor = "Shusaku Tsumoto and Yukio Ohsawa and Lei Chen and {Van den Poel}, Dirk and Xiaohua Hu and Yoichi Motomura and Takuya Takagi and Lingfei Wu and Ying Xie and Akihiro Abe and Vijay Raghavan",
booktitle = "Proceedings - 2022 IEEE International Conference on Big Data, Big Data 2022",
address = "United States",
}