FAIR AI Models in High Energy Physics

Haoyang Li, Javier Duarte, Avik Roy, Ruike Zhu, E. A. Huerta, Daniel Diaz, Philip Harris, Raghav Kansal, Daniel S. Katz, Ishaan H. Kavoori, Volodymyr V. Kindratenko, Farouk Mokhtar, Mark S. Neubauer, Sang Eon Park, Melissa Quinnan, Roger Rusack, Zhizhen Zhao

Research output: Contribution to journalConference articlepeer-review

Abstract

The findable, accessible, interoperable, and reusable (FAIR) data principles serve as a framework for examining, evaluating, and improving data sharing to advance scientific endeavors. There is an emerging trend to adapt these principles for machine learning models-algorithms that learn from data without specific coding-and, more generally, AI models, due to AI's swiftly growing impact on scientific and engineering sectors. In this paper, we propose a practical definition of the FAIR principles for AI models and provide a template program for their adoption. We exemplify this strategy with an implementation from high-energy physics, where a graph neural network is employed to detect Higgs bosons decaying into two bottom quarks.

Original languageEnglish (US)
Article number09017
JournalEPJ Web of Conferences
Volume295
DOIs
StatePublished - May 6 2024
Event26th International Conference on Computing in High Energy and Nuclear Physics, CHEP 2023 - Norfolk, United States
Duration: May 8 2023May 12 2023

ASJC Scopus subject areas

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'FAIR AI Models in High Energy Physics'. Together they form a unique fingerprint.

Cite this