FacetGist: Collective extraction of document facets in large technical corpora

Tarique Siddiqui, Xiang Ren, Aditya Parameswaran, Jiawei Han

Research output: Chapter in Book/Report/Conference proceedingConference contribution


Given the large volume of technical documents available, it is crucial to automatically organize and categorize these documents to be able to understand and extract value from them. Towards this end, we introduce a new research problem called Facet Extraction. Given a collection of technical documents, the goal of Facet Extraction is to automatically label each document with a set of concepts for the key facets (e.g., application, technique, evaluation metrics, and dataset) that people may be interested in. Facet Extraction has numerous applications, including document summarization, literature search, patent search and business intelligence. The major challenge in performing Facet Extraction arises from multiple sources: concept extraction, concept to facet matching, and facet disambiguation. To tackle these challenges, we develop FacetGist, a framework for facet extraction. Facet Extraction involves constructing a graph-based heterogeneous network to capture information available across multiple local sentence-level features, as well as global context features. We then formulate a joint optimization problem, and propose an efficient algorithm for graph-based label propagation to estimate the facet of each concept mention. Experimental results on technical corpora from two domains demonstrate that Facet Extraction can lead to an improvement of over 25% in both precision and recall over competing schemes.

Original languageEnglish (US)
Title of host publicationCIKM 2016 - Proceedings of the 2016 ACM Conference on Information and Knowledge Management
PublisherAssociation for Computing Machinery
Number of pages10
ISBN (Electronic)9781450340731
StatePublished - Oct 24 2016
Event25th ACM International Conference on Information and Knowledge Management, CIKM 2016 - Indianapolis, United States
Duration: Oct 24 2016Oct 28 2016

Publication series

NameInternational Conference on Information and Knowledge Management, Proceedings


Other25th ACM International Conference on Information and Knowledge Management, CIKM 2016
Country/TerritoryUnited States

ASJC Scopus subject areas

  • General Decision Sciences
  • General Business, Management and Accounting


Dive into the research topics of 'FacetGist: Collective extraction of document facets in large technical corpora'. Together they form a unique fingerprint.

Cite this