Abstract
In this paper, we report a new fabrication route to generate microstructured, single-crystalline silicon (μs-Si) ribbons using (1 1 0) silicon. Two different methods were explored for producing these printable structures. This work also introduces a second-process innovation in the fabrication of microstructured semiconductor objects for printed large-area circuits, namely the direct integration of a high-quality, thermally grown silicon dioxide (SiO2) layer for use as a gate dielectric in top-gate metal-oxide-silicon field effect transistors. We also demonstrate and characterize a soft, conformable lamination process that considerably enhances the mechanical stability of devices printed on plastic, allowing bending radii as small as 0.8 cm. These structures enable a reduction of the bending strains localized at the device interface. These improvements were fully characterized by finite element simulations of the strain distribution present in a descriptive model of the multilayer laminated circuit.
Original language | English (US) |
---|---|
Article number | 075018 |
Journal | Journal of Micromechanics and Microengineering |
Volume | 20 |
Issue number | 7 |
DOIs | |
State | Published - 2010 |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Mechanics of Materials
- Mechanical Engineering
- Electrical and Electronic Engineering